Corona matematikë

raportin javor të RKI të datës 11.11.2021, renditet në faqen 22 se \(36\%\) pacientët me korona mbi 60 vjeç në njësinë e kujdesit intensiv ishin tashmë plotësisht të vaksinuar. Në këtë grupmoshë, \(87\%\) vaksinuan plotësisht në këtë moment në kohë (shih f. 18).


Ndoshta:

  • \(G\): Mbi 60-vjeçarët janë të vaksinuar
  • \(U\): Mbi 60-vjeçarët nuk janë të vaksinuar
  • \(I\): Mbi 60-vjeçarët janë në terapi intensive

Tani është

$$P(G) = 0,87 \wedge P(U) = 0,13.$$

Gjithashtu është

$$P(G|I) = \frac{P(G \cap I)}{P(I)} = 0,36 \wedge P(U|I) = \frac{P(U \cap I)}{P(I)} = 0,64.$$

Kështu është

$$P(G \cap I) = 0,36 \cdot P(I) \wedge P(U \cap I) = 0,64 \cdot P(I)$$

dhe për shkak të

$$P(I|U) = \frac{P(I \cap U)}{P(U)} = \frac{P(U \cap I)}{P(U)} = \frac{0,64 \cdot P(I)}{0,13} \Rightarrow P(I) = \frac{0,13 \cdot P(I|U)}{0,64}.$$

Ajo vijon

$$P(I|G) = \frac{P(I \cap G)}{P(G)} = \frac{P(G \cap I)}{P(G)} = \frac{0,36 \cdot P(I)}{0,87} = \frac{0,36 \cdot \frac{0,13 \cdot P(I|U)}{0,64}}{0,87} = \frac{0,36 \cdot 0,13}{0,64 \cdot 0,87} \cdot P(I|U) \approx 0,08 \cdot P(I|U).$$

Kjo do të thotë se rreziku që personat mbi 60 vjeç me korona të përfundojnë në njësinë e kujdesit intensiv është më shumë se 10 herë më i madh për ata që nuk janë vaksinuar sesa për ata që janë vaksinuar.

Mbrapa