Embikweni wamasonto onke we - RKI wangomhla ka-11.11.2021 kubhalwe ekhasini 22 ukuthi \(36\%\) weziguli ze-corona ezineminyaka engaphezu kwengama-60 egunjini labagula kakhulu zase zigonywe ngokugcwele. Kuleli qembu lobudala, \(87\%\) bagonywe ngokuphelele ngalesi sikhathi (bheka ikhasi 18).
Kungenzeka:
- \(G\): Abantu abangaphezu kweminyaka engama-60 bayagonywa
- \(U\): Abantu abangaphezu kweminyaka engama-60 abagonywa
- \(I\): Abantu abangaphezu kweminyaka engama-60 basesimweni esibucayi
Manje kunjalo
$$P(G) = 0,87 \wedge P(U) = 0,13.$$
Futhi kunjalo
$$P(G|I) = \frac{P(G \cap I)}{P(I)} = 0,36 \wedge P(U|I) = \frac{P(U \cap I)}{P(I)} = 0,64.$$
Kanjalo
$$P(G \cap I) = 0,36 \cdot P(I) \wedge P(U \cap I) = 0,64 \cdot P(I)$$
futhi ngenxa
$$P(I|U) = \frac{P(I \cap U)}{P(U)} = \frac{P(U \cap I)}{P(U)} = \frac{0,64 \cdot P(I)}{0,13} \Rightarrow P(I) = \frac{0,13 \cdot P(I|U)}{0,64}.$$
Iyalandela
$$P(I|G) = \frac{P(I \cap G)}{P(G)} = \frac{P(G \cap I)}{P(G)} = \frac{0,36 \cdot P(I)}{0,87} = \frac{0,36 \cdot \frac{0,13 \cdot P(I|U)}{0,64}}{0,87} = \frac{0,36 \cdot 0,13}{0,64 \cdot 0,87} \cdot P(I|U) \approx 0,08 \cdot P(I|U).$$
Lokhu kusho ukuthi ubungozi bokuthi abantu abaneminyaka engaphezu kuka-60 abane-corona bagcine sebesegunjini labagula kakhulu bukhulu ngokuphindwe ka-10 kulabo abangakagonywa kunalabo abagonyiwe.