Xisaabta Corona

Warbixinta toddobaadlaha ah ee RKI ee 11.11.2021 waxay ku taxan tahay bogga 22 in \(36\%\) bukaannada ka weyn 60-jirka ee ku jira qaybta daryeelka degdegga ah ay si buuxda u tallaaleen. Kooxdan da'da ah, \(87\%\) si buuxda loo tallaalay waqtigan (eeg bogga 18).


Waxaa laga yaabaa in:

  • \(G\): Dadka da'doodu ka weyn tahay 60 sano waa la tallaalaa
  • \(U\): Dadka ka weyn 60 sano lama tallaalo
  • \(I\): Dadka da'doodu ka weyn tahay 60 sano ayaa ku jira daryeelka degdegga ah

Hadda waa

$$P(G) = 0,87 \wedge P(U) = 0,13.$$

Sidoo kale waa

$$P(G|I) = \frac{P(G \cap I)}{P(I)} = 0,36 \wedge P(U|I) = \frac{P(U \cap I)}{P(I)} = 0,64.$$

Waa sidaas oo kale

$$P(G \cap I) = 0,36 \cdot P(I) \wedge P(U \cap I) = 0,64 \cdot P(I)$$

iyo sababta

$$P(I|U) = \frac{P(I \cap U)}{P(U)} = \frac{P(U \cap I)}{P(U)} = \frac{0,64 \cdot P(I)}{0,13} \Rightarrow P(I) = \frac{0,13 \cdot P(I|U)}{0,64}.$$

Way daba socotaa

$$P(I|G) = \frac{P(I \cap G)}{P(G)} = \frac{P(G \cap I)}{P(G)} = \frac{0,36 \cdot P(I)}{0,87} = \frac{0,36 \cdot \frac{0,13 \cdot P(I|U)}{0,64}}{0,87} = \frac{0,36 \cdot 0,13}{0,64 \cdot 0,87} \cdot P(I|U) \approx 0,08 \cdot P(I|U).$$

Tani waxay ka dhigan tahay in halista dadka ka weyn 60-ka ee qaba korona ay ku dhamaanayaan qaybta daryeelka degdega ah ay 10 jeer ka badan tahay kuwa aan la tallaalin marka loo eego kuwa la tallaalay.

Dib u laabo