# Umhlaba kunye ne-ertyisi0817

$$r_1 = 6370km$$ umhlaba (njengebhola $$r_1 = 6370km$$ ) kunye ne-ertyisi (njengebhola $$r_2 = 2mm$$ ) $$r_2 = 2mm$$ intambo phezu kwe-ikhweyitha ukuze ilale nkqo kumphezulu. Ngoku uzolula zombini iintambo ngemitha enye nganye. Zombini ezi ntambo kufuneka ngoku zilaliswe ngokupheleleyo kwi-ikhweyitha kwakhona - azisalali phantsi ngaphezulu, kodwa zindanda ngaphezulu kwe-ikhweyitha. Iphakame kangakanani intambo ngaphezu komhlaba, iphakame kangakanani ngaphezu kwepea?

Ezi ntambo zimbini zinobude bokuqala:

$$l_1 = 2\cdot 6370 km \cdot \pi \Leftrightarrow r_1 = 6370 km = \frac{l_1}{2 \cdot \pi}$$

njenge

$$l_2 = 2 \cdot 2mm \cdot \pi \Leftrightarrow r_2 = 2mm = \frac{l_2}{2 \cdot \pi}.$$

Kodwa ngoku kusemva kolwandiso

$$r_{1 NEU} = \frac{l_1 + 1m}{2\cdot \pi}$$

njenge

$$r_{2 NEU} = \frac{l_2 + 1m}{2\cdot \pi}.$$

Kodwa ngoku kuyamangalisa

$$r_{1 NEU} - r_1 = \frac{l_1 + 1m}{2\cdot \pi} - \frac{l_1}{2\cdot \pi} = \frac{l_1 + 1m - l_1}{2 \cdot \pi} = \frac{1m}{2 \cdot \pi} = 0.159m$$

njenge

$$r_{2 NEU} - r_2 = \frac{l_2 + 1m}{2\cdot \pi} - \frac{l_2}{2\cdot \pi} = \frac{l_2 + 1m - l_2}{2 \cdot \pi} = \frac{1m}{2 \cdot \pi} = 0.159m.$$

Yiyo loo nto umgama ukusuka kumphezulu uzimele nge $$l_1$$ okanye $$l_2$$ , $$l_2$$ uzimele kwi radii $$r_1$$ okanye $$r_2$$ yamacandelo. Impendulo emangazayo yile: Zombini ezi ntambo $$0.159m$$ ngobude obufanayo $$0.159m$$ ) ngaphezulu komphezulu womhlaba.

Emva