\(r_1 = 6370km\) umhlaba (njengebhola \(r_1 = 6370km\) ) kunye ne-ertyisi (njengebhola \(r_2 = 2mm\) ) \(r_2 = 2mm\) intambo phezu kwe-ikhweyitha ukuze ilale nkqo kumphezulu. Ngoku uzolula zombini iintambo ngemitha enye nganye. Zombini ezi ntambo kufuneka ngoku zilaliswe ngokupheleleyo kwi-ikhweyitha kwakhona - azisalali phantsi ngaphezulu, kodwa zindanda ngaphezulu kwe-ikhweyitha. Iphakame kangakanani intambo ngaphezu komhlaba, iphakame kangakanani ngaphezu kwepea?
Ezi ntambo zimbini zinobude bokuqala:
$$
l_1 = 2\cdot 6370 km \cdot \pi \Leftrightarrow r_1 = 6370 km = \frac{l_1}{2 \cdot \pi}
$$
njenge
$$
l_2 = 2 \cdot 2mm \cdot \pi \Leftrightarrow r_2 = 2mm = \frac{l_2}{2 \cdot \pi}.
$$
Kodwa ngoku kusemva kolwandiso
$$
r_{1 NEU} = \frac{l_1 + 1m}{2\cdot \pi}
$$
njenge
$$
r_{2 NEU} = \frac{l_2 + 1m}{2\cdot \pi}.
$$
Kodwa ngoku kuyamangalisa
$$
r_{1 NEU} - r_1 = \frac{l_1 + 1m}{2\cdot \pi} - \frac{l_1}{2\cdot \pi} = \frac{l_1 + 1m - l_1}{2 \cdot \pi} = \frac{1m}{2 \cdot \pi} = 0.159m
$$
njenge
$$
r_{2 NEU} - r_2 = \frac{l_2 + 1m}{2\cdot \pi} - \frac{l_2}{2\cdot \pi} = \frac{l_2 + 1m - l_2}{2 \cdot \pi} = \frac{1m}{2 \cdot \pi} = 0.159m.
$$
Yiyo loo nto umgama ukusuka kumphezulu uzimele nge \(l_1\) okanye \(l_2\) , \(l_2\) uzimele kwi radii \(r_1\) okanye \(r_2\) yamacandelo. Impendulo emangazayo yile: Zombini ezi ntambo \(0.159m\) ngobude obufanayo \(0.159m\) ) ngaphezulu komphezulu womhlaba.