Ke hoʻomaka kahi pāʻani soccer, moe ka pōpō i waenakonu o ke kahua a neʻe ʻia a puni ke kula no 45 mau minuke e ka hoʻololi a me ka huli ʻana. I ka hoʻomaka o ka hapa lua, aia hou ke kinipōpō ma ke kikowaena o ke kahua. Hōʻike mākou me nā ala maʻalahi o ka algebra linear i kahi helu palena ʻole o nā helu ma ka ʻaoʻao i ke kūlike i like me ke kūlana kumu a i ʻole 2 kikoʻī.
ʻO ka mea mua, nā hoʻoneʻe o ke kinipōpō, i lawe ʻia i ka hapa 1, e hoʻohui liʻiliʻi i ka vector zero. No laila hiki iā lākou ke haʻalele. Waiho kēia i kahi helu palena o nā kaʻapuni \(A_1, ..., A_n \in \mathbb{R}^{3 \times 3}\) me \(A\) orthogonal a me \(\det(A_k) = 1 \,\, \forall \,\, k \in \{1,...,n\}\) . No kēlā me kēia hoʻohuli ʻelua \(A_i, A_j\) pili:
$$ (A_i A_j)^T (A_i A_j) = A_j^T A_i^T A_i A_j = A_j^T (A_i^T A_i) A_j = A_j^T E_3 A_j = A_j^T A_j = E_3 $$
e like me
$$ \det(A_i A_j) = \det(A_i) \cdot \det(A_j)=1 \cdot 1 = 1. $$
ʻO kēia ke ʻano o ke \( A_i A_j \) , no laila ʻo \( A_1 ... A_n \) kaʻapuni hoʻokahi pū kekahi.
Inā i kēia manawa \( A_1 ... A_n = E_n \) , a laila maopopo leʻa nā kiko āpau o ka ʻili o ka poepoe i ka manawa hoʻomaka - ma kahi hihia ʻē aʻe (ʻoi aku paha) e like ka eigenvector o \( A_1 ... A_n \) me kāna axis o ka huli ka eigenvalue \(1\) . ʻO ke kumu o kēia mau kiko ʻelua, e moe ana i ke koʻi o ka huli, i palapala ʻia iā lākou iho.