Uma sicabanga ukuthi inombolo \(Y\) yabo bonke abantu abake baba khona nabazogcina bezelwe ilinganiselwe, ake \(x\) kube indawo yakho ephelele kusukela ekuqaleni kohlu. Bese \(0 < \frac{x}{Y} \leq 1\) . Manje singasho ngamathuba okuthi \(95\%\) ukuthi uphakathi kwabokugcina \(95\%\) babo bonke abantu abake bazalwa, ngakho \(0,05 < \frac{x}{Y} \leq 1\) ngakho-ke \(Y < \frac{x}{0,05} = \frac{100 \cdot x}{5} = 20 \cdot x\) .
Ngokuvumelana nezilinganiso \(x \approx 6 \cdot 10^{10}\) futhi ngakho \(Y < 120 \cdot 10^{10}\) . Uma ubude bokuphila buhlala bufana futhi nenani labantu abaphila ngesikhathi esifanayo lizinza, kuseneminyaka engaba ngu- \(10.000\) esele ukuze \(Yx = 114 \cdot 10^{10}\) . I-agumenti yosuku lwembubhiso isebenza ngokulinganayo kuwo wonke amaphuzu emlandweni - umuntu angenza impikiswano efanayo \(2000\) eminyakeni edlule noma \(5000\) eminyakeni ezayo; ingqondo eyisisekelo isazosebenza (umkhawulo ongaphezulu kokuthi \(Y\) uba mkhulu ngokufanele).
Ukuhlolwa komcabango olandelayo kusebenza ngendlela efanayo: Cabangela ama-urns amabili \(A\) namabhola \(100\) kanye \(B\) namabhola \(100\) ayizigidi. Awazi ukuthi iyiphi i-urn. Uma manje udweba ngokungaboni kweyodwa yama-urn amabili bese uthola ibhola elinenombolo \(42\) , maningi amathuba okuthi livele ku-urn \(A\) kunaku-urn \(B\) (kuyinto futhi kakhulu kungenzeka ukuthi uphakathi kwabokugcina \(95\%\) babo bonke abantu abake bazalwa futhi mancane amathuba okuthi ube phakathi kwabokuqala \(5\%\) babo bonke abantu abake bazalwa).
Ngakho-ke i-urn ihlale igcwalisa amabhola amasha ngokuhamba kwesikhathi, futhi ukukhipha inombolo nganoma isiphi isikhathi ngesikhathi kusitshela okuthile mayelana nenani eliphelele lamabhola angenzeka ngaleso sikhathi, kodwa akukho lutho mayelana nenani lekusasa lamabhola urn. Lokhu kuzodinga ukuhlaziywa kwe-urn.