# 0,99999... = 1?1214

Vel ad scholam vel ad universitates: An interesting quaestionem, quae $$0,99999... = 1$$ et tunc includit quaestio est utrum haec sit vera equation: $$0,99999... = 1$$ . Licet infinitum $$0,99999... = A$$ in sinistram partem signi aequalitatis, ut tribuo is a nomen $$0,99999... = A$$ . Post multiplex per elementum $$10$$ et simplex methodos algebraicas tanto, ut admirabilis, ut a prima vidit.

$$\begin{array}{rcll} 9,99999... & = & 10\cdot A & \Leftrightarrow \\ 9 + 0,99999... & = & 10 \cdot A & \Leftrightarrow \\ 9 + A & = & 10 \cdot A & \Leftrightarrow \\ 9 & = & 9 \cdot A & \Leftrightarrow \\ 1 & = & A & \Leftrightarrow \\ 1 & = & 0,99999... & \end{array}$$

Est non difficile est, quae omnino. Sed quid si ad hoc numeri $$...99999$$ quae videtur primo intuitu paulo mirum in infinitum extenditur ad dexteram neque ad sinistram;

Idem ac supra exercemus transformationibus:

$$\begin{array}{rcll} ...99999 & = & B & \Leftrightarrow \\ ...999990 & = & 10\cdot B & \Leftrightarrow \\ B - 9 & = & 10 \cdot B & \Leftrightarrow \\ - 9 & = & 9 \cdot B & \Leftrightarrow \\ -1 & = & B & \Leftrightarrow \\ -1 & = & ...99999 & \end{array}$$

Denique iam hinc bella et numerus $$...99999,99999...$$

et id quod spectat ad primum aspectum mirabile

$$\begin{array}{rcll} ...99999,99999... & = & C & \Leftrightarrow \\ ...99999,99999... & = & 10\cdot C & \Leftrightarrow \\ C & = & 10 \cdot C & \Leftrightarrow \\ 0 & = & 9 \cdot C & \Leftrightarrow \\ 0 & = & C & \end{array}$$

Sed haec satis etiam constat, quod in una parte $$A + B = 0,99999... + ...99999 = 99999,99999 = C$$ et in altera, $$A + B = 1 + (-1) = 0 = C$$ ducit.

Nota: hoc enim ostensum est quod si una definit $$A, B$$ et $$C$$ et suis assignatis de illis valorem rationabile ergo valores $$1, -1$$ et $$0$$ .

Back