Mayelana noketshezi

Cabanga ngezinkomishi ezimbili ezifanayo - eyodwa egcwele ikhofi enye ngobisi, zombili zisezingeni elifanayo. Ithisipuni lekhofi manje selikhishwa enkomishini yekhofi lifakwe enkomishini yobisi bese liyanyakaziswa. Bese wengeza ithisipuni lengxube enkomishini yobisi ubuyisele enkomishini yekhofi. Iyiphi inkomishi equkethe uketshezi lwangaphandle olwengeziwe kamuva?


Ngokuqondayo, umuntu angase acabange ukuthi kunekhofi eliningi enkomishini yobisi ngoba ithisipuni lokuqala laliqukethe ikhofi kuphela, kuyilapho ithisipuni elikhishwe emuva laliyingxube yobisi nekhofi. Impendulo emangalisayo ukuthi zombili izinkomishi zigcina zinenani elifanayo loketshezi lwangaphandle. Ukwenza lokhu, amanani ekhofi nobisi ahlaziywa ngamaphuzu amathathu ngesikhathi \(t_0, t_1, t_2\):

  1. \(t_0\) (ekuqaleni): Inkomishi egcwele yekhofi ( \(T\) ) nobisi ( \(0\) ) enkomishini yekhofi, alikho ikhofi ( \(0\) ) kanye nenkomishi egcwele ubisi ( \(T\) ) enkomishini yobisi.
  2. \(t_1\) (ngemuva kokudluliswa kokuqala): \(TL\) ikhofi \(0\) nobisi enkomishini yekhofi, \(L\) ikhofi kanye \(T\) nobisi enkomishini yobisi ( \(L\) = ubuningi bethisipuni)
  3. \(t_2\) (ngemuva kokudluliselwa kwesibili): \(T-L+L_2\) ikhofi \(L_1\) nobisi enkomishini yekhofi, \(L-L_2\) ikhofi kanye \(T-L_1\) ubisi enkomishini yobisi ( \(L_1\) = inani lobisi esipunini, \(L_2\) = inani lekhofi kuthisipuni).

Kusukela \(L_1+L_2 = L\) , \(L-L_2 = L_1\) . Lokhu kusho ukuthi inani lobisi ( \(L_1\) ) enkomishini yekhofi lilingana nenani lekhofi ( \(L-L_2\) ) enkomishini yobisi. Lokhu kungachazwa ngokucacile ngale ndlela elandelayo: Ekupheleni kokuhlolwa, inkomishi yekhofi isezingeni elifanayo nasekuqaleni. Kodwa njengoba kwakunezelwa ubisi, inani elifanayo lekhofi kumelwe ukuba lalisele enkomishini. Leli nani lekhofi manje selikhona enkomishini yobisi.

Emuva