Imbali Yokuphila0519

I-Flower of Life iyindlela ejwayelekile, efana nembali, iphethini yejometri etholakale emathempelini, emibhalweni yesandla, futhi isikhathi esithile esikweni le-pop izinkulungwane zeminyaka. Iphethini nayo ibamba iqhaza ku-esotericism. Konke lokhu sikushaya indiva manje bese sigxila ekwakheni okulula ukwakheka kwejometri, okwakhiwa imibuthano eminingana ebekwe ngokulingana, egqagqene.

Umumo, obonwa ngabaningi njengophelele ngokuvumelana, unokulingana okuphindwe kasithupha futhi kwaziwa izazi zefilosofi eziningi, abakhi bezakhiwo nabadwebi emhlabeni jikelele. Inqubo yabo yokwakha ephindaphindwayo ilula ikakhulukazi.

Dweba indingilizi $$K_1$$ $$r>0$$ ezungeze isikhungo $$m_1$$ nombuthano wesibili $$K_2$$ $$r$$ ezungeze isikhungo $$m_2 \in K_1$$ . Yonke eminye imibuthano $$K_n$$ manje ilandela impahla elandelayo: Ngamunye uneradiyo $$r$$ nephoyinti lesikhungo $$m_n$$ kunoma iyiphi indawo yokuhlangana kwemibuthano yangaphambilini.

Izinga $$g$$ lephethini libizwa $$\text{round} \left( \frac{ max(\overline{m_n m_1})}{r} \right) -1$$ . $$\overline{m_n m_1} > g+1$$ imibuthano kuphela uma $$\overline{m_n m_1} > g+1$$ ubamba. Ekugcineni, sifaka iphethini ngombuthano werediyasi $$r \cdot g$$ ezungeze isikhungo $$m_1$$ . Enguqulweni "eqinile" ye-Flower of Life, yonke imibuthano ene- $$\text{round}\left( \overline{m_n m_1} \right) = g$$ noma $$\text{round} \left( \overline{m_n m_1} \right) = g-1$$ kuphela lawo ma-circular circular adwetshiwe aphakathi kwamaphoyinti awo empambana nayo yonke imibuthano $$K_k$$ nge $$\text{round} \left( \overline{m_k m_1} \right) = g-1$$ noma $$\text{round} \left( \overline{m_k m_1} \right) = g-2$$ .

Ngama- SVG.js namanye ama- trigonometry esikole sakha i-Flower of Life yanoma yiliphi ibanga:

See the Pen Flower of Life by David Vielhuber (@vielhuber) on CodePen.

Emuva