# Ubaxa Nolosha0519

Ubaxa Noloshu waa wax la yaqaan, ubax u eg, qaab joomatari ah oo laga helay macbudyo, qoraal gacmeedyo, iyo in muddo ah dhaqanka pop-ka kumanaan sano. Qaabku wuxuu kaloo door ka ciyaaraa isxilqaanka. Waxaan iska indhatireynaa waxaas oo dhan xilligan oo waxaan xoogga saareynaa dhismaha fudud ee qaabka joomatari, kaas oo ka kooban dhowr wareeg oo isleeg, wareegyo is dulsaaran.

Qaabka, oo ay dad badani u arkaan inuu si waadax ah u dhammaystiran yahay, wuxuu leeyahay iskumid lix geesood ah, waxaana yaqaanna falsafad-yaqaanno badan, farshaxanno iyo farshaxanno adduunka ku baahsan. Nidaamkooda dhisme ee soo noqnoqda ayaa si gaar ah u fudud.

Sawir goobaab $$K_1$$ leh radius $$r>0$$ ku wareegsan bartamaha $$m_1$$ iyo wareeg labaad $$K_2$$ leh radius $$r$$ agagaarka xarunta $$m_2 \in K_1$$ . Dhammaan wareegyada sii socda $$K_n$$ hadda waxay raacayaan hantida soo socota: Mid walba wuxuu leeyahay gacan $$r$$ iyo barta dhexe $$m_n$$ meel kasta oo ka mid ah isgoysyada wareegyadii hore.

Darajada $$g$$ qaab ayaa loo yaqaan $$\text{round} \left( \frac{ max(\overline{m_n m_1})}{r} \right) -1$$ . Waxaan $$\overline{m_n m_1} > g+1$$ keliya wareegyada haddii $$\overline{m_n m_1} > g+1$$ hayaan. Ugu dambeyntiina, waxaan ku soo lifaaqeynaa qaabka wareegga gacantiisa $$r \cdot g$$ agagaarka bartamaha $$m_1$$ . Qaabka "adag" ee Ubaxa Nolosha, dhamaan wareegyada leh $$\text{round}\left( \overline{m_n m_1} \right) = g$$ ama $$\text{round} \left( \overline{m_n m_1} \right) = g-1$$ kaliya kuwa qaansooyinka wareegsan ayaa la sawiray kuwaas oo udhaxeeya dhibcahooda isgoyska oo leh dhammaan wareegyada $$K_k$$ leh $$\text{round} \left( \overline{m_k m_1} \right) = g-1$$ ama $$\text{round} \left( \overline{m_k m_1} \right) = g-2$$ .

Iyada oo SVG.js iyo trigonometry-ga dugsiga qaarkood waxaan ku dhiseynaa Ubax Nololeed shahaado kasta ha noqotee:

See the Pen Flower of Life by David Vielhuber (@vielhuber) on CodePen.

Dib u laabo