Waxaa jira cadeymo fara badan oo ku saabsan xadidnaanta tirooyinka rasmiga ah - aragtida caanka ah ee ' Euclid theorem' ee ka socota Buugga Elements ayaan ka maqnayn koorso aragtida tirade asaasiga ah. Bishii Maarso ee Xisaabta Mareykanka (Issue 122) ee 2015 Sam Northshield wuxuu daabacay cadeymo aan ka yarayn oo xarrago ah oo iskudhac ah oo ah qaab hal xariiq ah, oo aanan rabin inaan kaa celiyo (faallo kooban).
$$0 < \prod_{p} \sin \underbrace{ \left( \frac{\pi}{p} \right) }_{ < \pi, \text{ da } p > 1 } = \prod_{p} \sin \left( \frac{\pi}{p} + 2 \pi \underbrace{ \frac{ \prod_{p'} p' }{p} }_{ \in \mathbb{N} } \right) = \prod_{p} \sin \left( \pi \underbrace{ \frac{ 1 + 2 \prod_{p'} p' }{p} }_{ \in \mathbb{N}, \text{ da } \left( 1 + 2 \prod_{p'} p' \right) \notin \mathbb{P} } \right) = 0$$