確率論のパラドックス

確率の条件付き理論は、直感に反する解決策を備えた美しいタスクをもたらします。 よく知られている兄弟の問題に加えて、別の例を簡単に説明します。「現在、2人の子供がいます。一方は男の子で、木曜日に生まれました。もう一方の子供も男の子である確率はどれくらいですか?」


結果スペースを選択します

$$I = \{(J.MO,J.MO), (J.MO,J.DI), (J.MO,J.MI), \cdots, (M.SO,M.FR), (M.SO,M.SA), (M.SO,M.SO)\} $$ with $$|I| = 196.$$ $$|I| = 196.$$

次に

$$ \begin{array}{rcl} B & = &\{(J.DO,J.MO), (J.DO,J.DI), (J.DO,J.MI), (J.DO,J.DO), (J.DO,J.FR), (J.DO,J.SA), (J.DO,J.SO),\\
& & (J.DO,M.MO), (J.DO,M.DI), (J.DO,M.MI), (J.DO,M.DO), (J.DO,M.FR), (J.DO,M.SA), (J.DO,M.SO),\\
& & (J.MO,J.DO), (J.DI,J.DO), (J.MI,J.DO), (J.FR,J.DO), (J.SA,J.DO), (J.SO,J.DO),\\
& & (M.MO,J.DO), (M.DI,J.DO), (M.MI,J.DO), (M.DO,J.DO), (M.FR,J.DO), (M.SA,J.DO), (M.SO,J.DO) \}\end{array}$$

\(|B| = 27\)

$$ \begin{array}{rcl} A & = &\{(J.DO,J.MO), (J.DO,J.DI), (J.DO,J.MI), (J.DO,J.DO), (J.DO,J.FR), (J.DO,J.SA), (J.DO,J.SO),\\
& &(J.MO,J.DO), (J.DI,J.DO), (J.MI,J.DO), (J.FR,J.DO), (J.SA,J.DO), (J.SO,J.DO)\}\end{array}$$

\(|A| = 13\)で、

  • \( P(A \cap B) = P(A) = \frac{13}{196} \),
  • \( P(B) = \frac{27}{196} \),
  • \( P_B(A) = \frac{P(A \cap B)}{P(B)} = \frac{13/196}{27/196} = \frac{13}{27} \neq \frac{1}{2} \).

いくつかの年には、他の日よりも木曜日が多いことを無視しています。

バック