Paradox នៃ stochastics

ទ្រឹស្តីដែលមានលក្ខខណ្ឌនៃប្រូបាប៊ីលីតេនាំមកជាមួយវានូវភារកិច្ចដ៏ស្រស់ស្អាតជាមួយនឹងដំណោះស្រាយផ្ទុយ។ ក្រៅពីបញ្ហា បងប្អូនបង្កើតដ៏ ល្បីខ្ញុំនឹងដោះស្រាយជាសង្ខេបនូវឧទាហរណ៍មួយទៀត៖ "ឥឡូវខ្ញុំមានកូនពីរនាក់។ ម្នាក់ក្នុងចំនោមពួកគេជាក្មេងប្រុសហើយកើតនៅថ្ងៃព្រហស្បតិ៍។ តើអ្វីទៅជាប្រូបាប៊ីលីតេដែលក្មេងផ្សេងទៀតក៏ជាក្មេងប្រុសដែរ?"


យើងជ្រើសរើសចន្លោះលទ្ធផល

$$I = \{(J.MO,J.MO), (J.MO,J.DI), (J.MO,J.MI), \cdots, (M.SO,M.FR), (M.SO,M.SA), (M.SO,M.SO)\} $$ ជាមួយ $$|I| = 196.$$ $$|I| = 196.$$

បន្ទាប់មក

$$ \begin{array}{rcl} B & = &\{(J.DO,J.MO), (J.DO,J.DI), (J.DO,J.MI), (J.DO,J.DO), (J.DO,J.FR), (J.DO,J.SA), (J.DO,J.SO),\\
& & (J.DO,M.MO), (J.DO,M.DI), (J.DO,M.MI), (J.DO,M.DO), (J.DO,M.FR), (J.DO,M.SA), (J.DO,M.SO),\\
& & (J.MO,J.DO), (J.DI,J.DO), (J.MI,J.DO), (J.FR,J.DO), (J.SA,J.DO), (J.SO,J.DO),\\
& & (M.MO,J.DO), (M.DI,J.DO), (M.MI,J.DO), (M.DO,J.DO), (M.FR,J.DO), (M.SA,J.DO), (M.SO,J.DO) \}\end{array}$$

ជាមួយ \(|B| = 27\) និង

$$ \begin{array}{rcl} A & = &\{(J.DO,J.MO), (J.DO,J.DI), (J.DO,J.MI), (J.DO,J.DO), (J.DO,J.FR), (J.DO,J.SA), (J.DO,J.SO),\\
& &(J.MO,J.DO), (J.DI,J.DO), (J.MI,J.DO), (J.FR,J.DO), (J.SA,J.DO), (J.SO,J.DO)\}\end{array}$$

ជាមួយ \(|A| = 13\) ដូច្នេះ

  • \( P(A \cap B) = P(A) = \frac{13}{196} \),
  • \( P(B) = \frac{27}{196} \),
  • \( P_B(A) = \frac{P(A \cap B)}{P(B)} = \frac{13/196}{27/196} = \frac{13}{27} \neq \frac{1}{2} \).

យើងធ្វេសប្រហែសថានៅឆ្នាំខ្លះមានថ្ងៃព្រហស្បតិ៍ច្រើនជាងថ្ងៃផ្សេងទៀត។

ថយក្រោយ