Paradoxon der Stochastik

Die bedingte Wahrscheinlichkeitstheorie bringt schöne Aufgabenstellungen mit kontraintuitiven Lösungen mit sich. Neben dem bekannten Geschwisterproblem will ich nun ein anderes Beispiel kurz abhandeln: "Inzwischen habe ich zwei Kinder. Ein Kind davon ist ein Junge und an einem Donnerstag geboren. Mit welcher Wahrscheinlichkeit ist das andere Kind auch ein Junge?"


Wir wählen den Ergebnisraum

$$I = \{(J.MO,J.MO), (J.MO,J.DI), (J.MO,J.MI), \cdots, (M.SO,M.FR), (M.SO,M.SA), (M.SO,M.SO)\} $$ mit $$|I| = 196.$$

Dann ist

$$ \begin{array}{rcl} B & = &\{(J.DO,J.MO), (J.DO,J.DI), (J.DO,J.MI), (J.DO,J.DO), (J.DO,J.FR), (J.DO,J.SA), (J.DO,J.SO),\\
& & (J.DO,M.MO), (J.DO,M.DI), (J.DO,M.MI), (J.DO,M.DO), (J.DO,M.FR), (J.DO,M.SA), (J.DO,M.SO),\\
& & (J.MO,J.DO), (J.DI,J.DO), (J.MI,J.DO), (J.FR,J.DO), (J.SA,J.DO), (J.SO,J.DO),\\
& & (M.MO,J.DO), (M.DI,J.DO), (M.MI,J.DO), (M.DO,J.DO), (M.FR,J.DO), (M.SA,J.DO), (M.SO,J.DO) \}\end{array}$$

mit \(|B| = 27\) sowie

$$ \begin{array}{rcl} A & = &\{(J.DO,J.MO), (J.DO,J.DI), (J.DO,J.MI), (J.DO,J.DO), (J.DO,J.FR), (J.DO,J.SA), (J.DO,J.SO),\\
& &(J.MO,J.DO), (J.DI,J.DO), (J.MI,J.DO), (J.FR,J.DO), (J.SA,J.DO), (J.SO,J.DO)\}\end{array}$$

mit \(|A| = 13\), also

  • \( P(A \cap B) = P(A) = \frac{13}{196} \),
  • \( P(B) = \frac{27}{196} \),
  • \( P_B(A) = \frac{P(A \cap B)}{P(B)} = \frac{13/196}{27/196} = \frac{13}{27} \neq \frac{1}{2} \).

Dabei vernachlässigen wir, dass es in manchen Jahren mehr Donnerstage gibt als andere Tage.

Zurück