Kondiĉa probablokalkulo enhavas belajn taskojn kun kontraŭintuiciaj solvoj. Krom la konata gefrata problemo, mi nun mallonge traktos alian ekzemplon: "Mi nun havas du infanojn. Unu el ili estas knabo kaj naskiĝis ĵaŭde. Kio estas la probablo, ke la alia infano ankaŭ estas knabo?"
Ni elektas la rezultan spacon
$$I = \{(J.MO,J.MO), (J.MO,J.DI), (J.MO,J.MI), \cdots, (M.SO,M.FR), (M.SO,M.SA), (M.SO,M.SO)\} $$ kun $$|I| = 196.$$ $$|I| = 196.$$
Tiam
$$ \begin{array}{rcl} B & = &\{(J.DO,J.MO), (J.DO,J.DI), (J.DO,J.MI), (J.DO,J.DO), (J.DO,J.FR), (J.DO,J.SA), (J.DO,J.SO),\\
& & (J.DO,M.MO), (J.DO,M.DI), (J.DO,M.MI), (J.DO,M.DO), (J.DO,M.FR), (J.DO,M.SA), (J.DO,M.SO),\\
& & (J.MO,J.DO), (J.DI,J.DO), (J.MI,J.DO), (J.FR,J.DO), (J.SA,J.DO), (J.SO,J.DO),\\
& & (M.MO,J.DO), (M.DI,J.DO), (M.MI,J.DO), (M.DO,J.DO), (M.FR,J.DO), (M.SA,J.DO), (M.SO,J.DO) \}\end{array}$$
kun \(|B| = 27\) kaj
$$ \begin{array}{rcl} A & = &\{(J.DO,J.MO), (J.DO,J.DI), (J.DO,J.MI), (J.DO,J.DO), (J.DO,J.FR), (J.DO,J.SA), (J.DO,J.SO),\\
& &(J.MO,J.DO), (J.DI,J.DO), (J.MI,J.DO), (J.FR,J.DO), (J.SA,J.DO), (J.SO,J.DO)\}\end{array}$$
kun \(|A| = 13\) , do
- \( P(A \cap B) = P(A) = \frac{13}{196} \),
- \( P(B) = \frac{27}{196} \),
- \( P_B(A) = \frac{P(A \cap B)}{P(B)} = \frac{13/196}{27/196} = \frac{13}{27} \neq \frac{1}{2} \).
Ni neglektas, ke en iuj jaroj estas pli multaj ĵaŭdoj ol aliaj tagoj.