Mathematica in ludo Dobble

Novissima familia vespera, ludus Dobble (in Harry Potter Edition) studiose a pueris ad mensam delatus est. Post quintam rotundam amissam (non visibili ictu chartae meae cum card ludentibus) Dictum est, stupori meo, quod omnis scaenicus semper in omnibus gyris ictum invenire potest. Sed incredulitas mea tantum agnovit cum adhuc gremiis amissis - liberi simpliciter erant velociores.


Ratio satis est ut propius aspicias ludum ex parte mathematica. Primum principium lusus: Dobble est simplex card lusus cum \(55\) rotundis pecto, unumquodque ostendens octo signa diversa. Omnes chartae vicissim tractantur, solum ultimum chartae in media tabula relinquens. Nunc omnes lusores debent simul habere symbola in charta cum symbolis comparare in currenti summo card. Si histrio idem symbolum in utraque charta invenerit, chartam suam in acervo collocare potest, cum velocissime symbolum nominare possit. Lusor qui omnes chartas suas abicit primus vincit.

Quomodo fieri potest ut tales \(55\) sint constructae ita ut quaelibet 2 schedulae prorsus unum symbolum commune habeant? Quid est numerus minimus talium symbolorum quibus utendum est? Quid est numerus maximus talis pecto?

Primum haec schedula construimus utentes sequentes logicales gradus (omnes deinde schedulae constructae proprietatem habent quae in ascendendo ordine disponuntur): Prima charta debet habere 8 diversa symbola, i.e.:

$$\left(\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{array}\right)$$

Nunc chartas sequentes construimus ita ut prorsus unum symbolum habeant commune cum primo chartae:

$$\left(\begin{array}{c} 1 \\ x_{1.2} \\ x_{1.3} \\ x_{1.4} \\ x_{1.5} \\ x_{1.6} \\ x_{1.7} \\ x_{1.8} \end{array}\right), \left(\begin{array}{c} 1 \\ x_{2.2} \\ x_{2.3} \\ x_{2.4} \\ x_{2.5} \\ x_{2.6} \\ x_{2.7} \\ x_{2.8} \end{array}\right), \left(\begin{array}{c} 1 \\ x_{3.2} \\ x_{3.3} \\ x_{3.4} \\ x_{3.5} \\ x_{3.6} \\ x_{3.7} \\ x_{3.8} \end{array}\right), \ldots, \left(\begin{array}{c} 1 \\ x_{k.2} \\ x_{k.3} \\ x_{k.4} \\ x_{k.5} \\ x_{k.6} \\ x_{k.7} \\ x_{k.8} \end{array}\right)$$

Quilibet numerus talium chartarum iam hic construi potest (modo imple loca ascendendo, incipiendo a \(9\) ). Hic casus levis non interest, tamen, quia in statuto cum minimo symbolorum numero sumus (et maximus numerus chartarum). Nunc secundo cujusvis chartae symbolum \( x_{l.2} \) consideramus, ad quod nimirum haec applicanda sunt: \( x_{1.2} \neq x_{2.2} \neq x_{3.2} \neq \ldots \neq x_{k.2} \) . Necessario igitur nova \( k \) introducta sunt. Nunc autem \( k \leq 8-1 = 7 \) , cum nulla ex \( 7 \) symbolis \( x_{1.2},\, x_{1.3},\, x_{1.4},\, x_{1.5},\, x_{1.6},\, x_{1.7},\, x_{1.8} \) (cardi ultimi chartae) secundo symbolo utriusque chartarum (aliter essent duo symbola identica. ).

Maximum horum invenimus novum pecto VII:

$$\left(\begin{array}{c} 1 \\ x_{1.2} \\ x_{1.3} \\ x_{1.4} \\ x_{1.5} \\ x_{1.6} \\ x_{1.7} \\ x_{1.8} \end{array}\right), \left(\begin{array}{c} 1 \\ x_{2.2} \\ x_{2.3} \\ x_{2.4} \\ x_{2.5} \\ x_{2.6} \\ x_{2.7} \\ x_{2.8} \end{array}\right), \left(\begin{array}{c} 1 \\ x_{3.2} \\ x_{3.3} \\ x_{3.4} \\ x_{3.5} \\ x_{3.6} \\ x_{3.7} \\ x_{3.8} \end{array}\right), \left(\begin{array}{c} 1 \\ x_{4.2} \\ x_{4.3} \\ x_{4.4} \\ x_{4.5} \\ x_{4.6} \\ x_{4.7} \\ x_{4.8} \end{array}\right), \left(\begin{array}{c} 1 \\ x_{5.2} \\ x_{5.3} \\ x_{5.4} \\ x_{5.5} \\ x_{5.6} \\ x_{5.7} \\ x_{5.8} \end{array}\right), \left(\begin{array}{c} 1 \\ x_{6.2} \\ x_{6.3} \\ x_{6.4} \\ x_{6.5} \\ x_{6.6} \\ x_{6.7} \\ x_{6.8} \end{array}\right), \left(\begin{array}{c} 1 \\ x_{7.2} \\ x_{7.3} \\ x_{7.4} \\ x_{7.5} \\ x_{7.6} \\ x_{7.7} \\ x_{7.8} \end{array}\right)$$

Eodem argumento nunc tabulas proximas \(7\) construimus (prima harum tabularum cum tabula nostra incipiens collidere habet, et non cum \(1\) , alioquin ante \(7\) esset. invenerunt maps):

$$\left(\begin{array}{c} 2 \\ x_{8.2} \\ x_{8.3} \\ x_{8.4} \\ x_{8.5} \\ x_{8.6} \\ x_{8.7} \\ x_{8.8} \end{array}\right), \left(\begin{array}{c} 2 \\ x_{9.2} \\ x_{9.3} \\ x_{9.4} \\ x_{9.5} \\ x_{9.6} \\ x_{9.7} \\ x_{9.8} \end{array}\right), \left(\begin{array}{c} 2 \\ x_{10.2} \\ x_{10.3} \\ x_{10.4} \\ x_{10.5} \\ x_{10.6} \\ x_{10.7} \\ x_{10.8} \end{array}\right), \left(\begin{array}{c} 2 \\ x_{11.2} \\ x_{11.3} \\ x_{11.4} \\ x_{11.5} \\ x_{11.6} \\ x_{11.7} \\ x_{11.8} \end{array}\right), \left(\begin{array}{c} 2 \\ x_{12.2} \\ x_{12.3} \\ x_{12.4} \\ x_{12.5} \\ x_{12.6} \\ x_{12.7} \\ x_{12.8} \end{array}\right), \left(\begin{array}{c} 2 \\ x_{13.2} \\ x_{13.3} \\ x_{13.4} \\ x_{13.5} \\ x_{13.6} \\ x_{13.7} \\ x_{13.8} \end{array}\right), \left(\begin{array}{c} 2 \\ x_{14.2} \\ x_{14.3} \\ x_{14.4} \\ x_{14.5} \\ x_{14.6} \\ x_{14.7} \\ x_{14.8} \end{array}\right)$$

Hoc argumentum etiam continuari potest ad chartas proxime \(7\) ; Summa \(8-2 = 6\) plurium temporum. The last \(7\) cards are accordingly:

$$\left(\begin{array}{c} 8 \\ x_{50.2} \\ x_{50.3} \\ x_{50.4} \\ x_{50.5} \\ x_{50.6} \\ x_{50.7} \\ x_{50.8} \end{array}\right), \left(\begin{array}{c} 8 \\ x_{51.2} \\ x_{51.3} \\ x_{51.4} \\ x_{51.5} \\ x_{51.6} \\ x_{51.7} \\ x_{51.8} \end{array}\right), \left(\begin{array}{c} 8 \\ x_{52.2} \\ x_{52.3} \\ x_{52.4} \\ x_{52.5} \\ x_{52.6} \\ x_{52.7} \\ x_{52.8} \end{array}\right), \left(\begin{array}{c} 8 \\ x_{53.2} \\ x_{53.3} \\ x_{53.4} \\ x_{53.5} \\ x_{53.6} \\ x_{53.7} \\ x_{53.8} \end{array}\right), \left(\begin{array}{c} 8 \\ x_{54.2} \\ x_{54.3} \\ x_{54.4} \\ x_{54.5} \\ x_{54.6} \\ x_{54.7} \\ x_{54.8} \end{array}\right), \left(\begin{array}{c} 8 \\ x_{55.2} \\ x_{55.3} \\ x_{55.4} \\ x_{55.5} \\ x_{55.6} \\ x_{55.7} \\ x_{55.8} \end{array}\right), \left(\begin{array}{c} 8 \\ x_{56.2} \\ x_{56.3} \\ x_{56.4} \\ x_{56.5} \\ x_{56.6} \\ x_{56.7} \\ x_{56.8} \end{array}\right)$$

Si aliud $$\left(\begin{array}{c} 9 \\ x_{57.2} \\ x_{57.3} \\ x_{57.4} \\ x_{57.5} \\ x_{57.6} \\ x_{57.7} \\ x_{57.8} \end{array}\right)$$ deficiet quia haec card non communicat symbolum cum card incipiens. Maximum ex tabulis \(1 + 8 \cdot 7 = 57\) construximus. Propositum nunc est construere saltem totidem.

Ad hoc faciendum inspicimus primas 7 novas chartas inventas et ad conclusionem nobis omnino necessarias \(7 \cdot 7\) novas hic symbolas (nulla charta bis symbolum habere ac unumquodque symbolum assignandum esse non videntur. bis, quia quod iam \(1\) est.:

$$\left(\begin{array}{c} 1 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \end{array}\right), \left(\begin{array}{c} 1 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \end{array}\right), \left(\begin{array}{c} 1 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \end{array}\right), \left(\begin{array}{c} 1 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \end{array}\right), \left(\begin{array}{c} 1 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 42 \\ 43 \end{array}\right), \left(\begin{array}{c} 1 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ 50 \end{array}\right), \left(\begin{array}{c} 1 \\ 51 \\ 52 \\ 53 \\ 54 \\ 55 \\ 56 \\ 57 \end{array}\right)$$

Itaque opus est minimis \(8 + (7 \cdot 7) = 57\) symbolis (tot symbolis quot chartae!). Nunc conamur hoc numero obtinere et regulam invenire constructionem omnium aliorum elementorum. Ad hoc efficiendum ambages paulo minoris momenti quae tantum symbola per chartam habet \(3\) et ut chartae initium recipiunt.

$$\left(\begin{array}{c} 1 \\ 2 \\ 3 \end{array}\right)$$

et alter pecto

$$\left(\begin{array}{c} 1 \\ 4 \\ 5 \end{array}\right), \left(\begin{array}{c} 1 \\ 6 \\ 7 \end{array}\right)$$

$$\left(\begin{array}{c} 2 \\ x_{3.2} \\ x_{3.3} \end{array}\right), \left(\begin{array}{c} 2 \\ x_{4.2} \\ x_{4.3} \end{array}\right)$$

$$\left(\begin{array}{c} 3 \\ x_{5.2} \\ x_{5.3} \end{array}\right), \left(\begin{array}{c} 3 \\ x_{6.2} \\ x_{6.3} \end{array}\right)$$

cum summa \(1 + 3 \cdot 2 = 7\) chartarum ac \( 3 + (2 \cdot 2) = 7\) symbolorum. Paulo iudicio et errore (et utens symbolis iam assignatis) habes sequens dobble:

$$\left(\begin{array}{c} 1 \\ 2 \\ 3 \end{array}\right)$$

$$\left(\begin{array}{c} 1 \\ 4 \\ 5 \end{array}\right), \left(\begin{array}{c} 1 \\ 6 \\ 7 \end{array}\right)$$

$$\left(\begin{array}{c} 2 \\ 4 \\ 6 \end{array}\right), \left(\begin{array}{c} 2 \\ 5 \\ 7 \end{array}\right)$$

$$\left(\begin{array}{c} 3 \\ 4 \\ 7 \end{array}\right), \left(\begin{array}{c} 3 \\ 5 \\ 6 \end{array}\right)$$

Potestne hoc quoque systematice inveniri? Ad hoc ingreditur symbola \(4, 5, 6, 7\) in duplicata matrice:

$$\begin{array}{ccc} 4 & & 5 \\ & & \\ 6 & & 7\end{array}$$

Nunc fingimus primum duas chartas (incipientes a symbolis initio \ \(4\) et \(5\) ) verticales lineas connectere ad symbola inferiora \(6\) et \(7\):

$$\begin{array}{ccc} 4 & & 5 \\ \vdots & & \vdots \\ 6 & & 7\end{array}$$

Cum hae lineae non secant, nos (signa in iunctis lineis per lineam struendo) maximas chartas validas accipimus.:

$$\left(\begin{array}{c} 2 \\ 4 \\ 6 \end{array}\right), \left(\begin{array}{c} 2 \\ 5 \\ 7 \end{array}\right)$$

Denique lineas connectentes diverso clivo (in hoc casu cum clivo \(1\) connectentes imaginamur ):

$$\begin{array}{ccccc} & 4 & & 5 & \\ \ddots & & \ddots & & \ddots \\ & 6 & & 7 &\end{array}$$

Secunda linea connectens (inter \(5\) et \(6\) ) relinquit matricem in margine dextro et reenters in margine sinistro. Clivum scite eligendo, una ex parte curamus ne lineae connexiones inter se intersecant, sed etiam priores lineas connexiones non secant. Hoc consilium idea finaliter ducit ad formulam sequentis design:

Duplex cum \(k \in \mathbb{N} \, | \, (k-1) \text{ prim} \) habet \(1+(k \cdot (k-1)) = k^2-k+1 = k + (k-1)(k-1)\) chartarum ac symbolorum. Nam tabula \(K_x\) cum \(x \in \mathbb{N}\) et \(0 \leq x \leq (k-1) \cdot k\) applicat:

$$K_x = \left(\begin{array}{c} f(x,1) \\ f(x,2) \\ \vdots \\ f(x,k) \end{array}\right), \,\, m = \left\lfloor \frac{x-1}{k-1} \right\rfloor + 1,$$

$$f(x,y) = \left\{\begin{array}{ll} y & \text{falls } x = 0 \\ \lfloor \frac{x-1}{k-1} \rfloor + 1, &\text{sonst falls } y = 1 \\ (k+1) + (k-1)(x-1) + (y-2), & \text{sonst falls } 0 < x < k \\ \left( \left((m-1)(k-1)+x\right)-1+ \left( (m-2)(y-2) \right) \right) \% (k-1) &\text{sonst} \\ + (k+1) + (k-1)(y-2)&\end{array}\right.$$

Sunt \((k-1)\cdot k + 1 = k + (k-1)(k-1)\) fragmenta harum chartarum. Nunc solum restat ostendere:

$$ \forall x_1 < x_2 \in \{ 1, \ldots, k+(k-1)(k-1) \} \, \exists \, ! \, y_1, y_2 \in \{ 1, \ldots, k \}: f(x_1, y_1) = f(x_2, y_2) $$

  • 1 si: \( x_1 = 0 \)
    • Casus 1a: \( 0 < x_2 < k \)
      • Pro \(y_1 = 1\) et \(y_2 = 1\) :
        \(f(x_1, y_1) = f(0, 1) = 1\)
        \(f(x_2, y_2) = f(x_2, 1) = \lfloor \frac{x_2-1}{k-1} \rfloor + 1 = 1\) .
      • Nam \(y_1 \neq 1\) et \(y_2 = 1\) :
        \(f(x_1, y_1) = f(0, y_1) = y_1 \neq 1\)
        \(f(x_2, y_2) = f(x_2, y_2) = \lfloor \frac{x_2-1}{k-1} \rfloor + 1 = 1\)
      • Pro \(y_1 = 1\) et \(y_2 \neq 1\) :
        \(f(x_1, y_1) = f(0, 1) = 1\)
        \(f(x_2, y_2) = f(x_2, y_2) = (k+1) + (k-1)(x-1) + (y-2) =\)
        \((k+1)(x-1) + (k-1) + y \geq (k+1)(x-1)+y > 1\)
      • Est enim \(y_1 \neq 1\) et \(y_2 \neq 1\) est.
        \(f(x_1, y_1) = f(0, y_1) = y_1 \leq k\)
        \(f(x_2, y_2) = f(x_2, y_2) = (k+1) + (k-1)(x-1) + (y-2) > k\)
    • Causa 1b *: \( x_2 \geq k \)
      • Nam \(y_1 = \left\lfloor \frac{x_2-1}{k-1} \right\rfloor + 1\) et \(y_2 = 1\) habemus:
        \(f(x_1, y_1) = f(0, \left\lfloor \frac{x_2-1}{k-1} \right\rfloor + 1) = \left\lfloor \frac{x_2-1}{k-1} \right\rfloor + 1\)
        \(f(x_2, y_2) = f(x_2, 1) = \left\lfloor \frac{x_2-1}{k-1} \right\rfloor + 1\)
      • Nam \(y_1 \neq \left\lfloor \frac{x_2-1}{k-1} \right\rfloor + 1\) et \(y_2 = 1\) est:
        \(f(x_1, y_1) = f(0, y_1) = y_1 \neq \left\lfloor \frac{x_2-1}{k-1} \right\rfloor + 1\)
        \(f(x_2, y_2) = f(x_2, 1) = \left\lfloor \frac{x_2-1}{k-1} \right\rfloor + 1\)
      • Nam \(y_2 \neq 1\) est;
        \(f(x_1, y_1) = f(0, y_1) = y_1 \leq k\)
        \(f(x_2, y_2) = \left( \left((m_2-1)(k-1)+x_2\right)-1+ \left( (m_2-2)(y_2-2) \right) \right) \% (k-1)\)
        \(+ (k+1) + (k-1)(y_2-2) \geq (k+1)+(k-1)(y_2-2) > k \)
  • 2 si: \( 0 < x_1 < k \)
    • Causa 2a*: \( 0 < x_2 < k \)
      • Pro \(y_1 = 1\) et \(y_2 = 1\) :
        \(f(x_1, y_1) = f(x_1, 1) = \left\lfloor \frac{x_1-1}{k-1} \right\rfloor + 1 = 1\)
        \(f(x_2, y_2) = f(x_2, 1) = \left\lfloor \frac{x_2-1}{k-1} \right\rfloor + 1 = 1\)
      • Nam \(y_1 \neq 1\) et \(y_2 = 1\) :
        \(f(x_1, y_1) = f(x_1, y_1) = (k+1)+(k-1)(x_1-1)+(y_1-2) > 1\)
        \(f(x_2, y_2) = f(x_2, 1) = \left\lfloor \frac{x_2-1}{k-1} \right\rfloor + 1 = 1\)
      • Pro \(y_1 = 1\) et \(y_2 \neq 1\) :
        \(f(x_1, y_1) = f(x_1, 1) = \left\lfloor \frac{x_1-1}{k-1} \right\rfloor + 1 = 1\)
        \(f(x_2, y_2) = f(x_2, y_2) = (k+1)+(k-1)(x_2-1)+(y_2-2) > 1\)
      • Est enim \(y_1 \neq 1\) et \(y_2 \neq 1\) est.
        \(f(x_1, y_1) = (k+1)+(k-1)(x_1-1)+(y_1-2) \leq\)
        \((k+1)+(k-1)(x_1-1)+(k-2)\)
        \(f(x_2, y_2) = (k+1)+(k-1)(x_2-1)+(y_2-2) \geq\)
        \((k+1)+(k-1)((x_1+1)-1)+(y_2-2) =\)
        \((k+1)+(k-1)(x_1-1) + (k-1) + (y_2-2) \geq\)
        \((k+1)+(k-1)(x_1-1) + (k-1) + (2-2) \geq\)
        \((k+1)+(k-1)(x_1-1) + (k-1) > (k+1)+(k-1)(x_1-1) + (k-2)\)
    • Causa 2b*: \( x_2 \geq k \)
      • Pro \(y_1 = 1\) et \(y_2 = 1\) :
        \(f(x_1, y_1) = f(x_1, 1) = \left\lfloor \frac{x_1-1}{k-1} \right\rfloor + 1 = 1\)
        \(f(x_2, y_2) = f(x_2, 1) = \left\lfloor \frac{x_2-1}{k-1} \right\rfloor + 1 \geq \left\lfloor \frac{k-1}{k-1} \right\rfloor + 1 = 2 > 1\)
      • Pro \(y_1 = 1\) et \(y_2 \neq 1\) :
        \(f(x_1, y_1) = f(x_1, 1) = \left\lfloor \frac{x_1-1}{k-1} \right\rfloor + 1 = 1\)
        \(f(x_2, y_2) = \left( \left((m_2-1)(k-1)+x_2\right)-1+ \left( (m_2-2)(y_2-2) \right) \right) \% (k-1)\)
        \(+ (k+1) + (k-1)(y_2-2) \geq (k+1) + (k-1)(y_2-2) > 1\)
      • Nam \(y_1 \neq 1\) et \(y_2 = 1\) :
        \(f(x_1, y_1) = \left( \left((m_1-1)(k-1)+x_1\right)-1+ \left( (m_1-2)(y_1-2) \right) \right) \% (k-1)\)
        \(+ (k+1) + (k-1)(y_1-2) \geq (k+1) + (k-1)(y_1-2) > 1\)
        \(f(x_2, y_2) = f(x_2, 1) = \left\lfloor \frac{x_2-1}{k-1} \right\rfloor + 1 = 1\)
      • For \(y_1 \neq 1\) et \(y_2 \neq 1\) is:
        \((k+1) + (k-1)(x_1-1) + (y_1-2) =\)
        \(\left( \left((m_2-1)(k-1)+x_2\right)-1+ \left( (m_2-2)(y_2-2) \right) \right) \% (k-1)\)
        \(+ (k+1) + (k-1)(y-2)\)
        \(\Leftrightarrow y_1 = (k-1)y_2 - (k-1)(x_1+1) +\)
        \(\left( 2 + \left( \left( \left((m_2-1)(k-1)+x_2\right)-1+ \left( (m_2-2)(y_2-2) \right) \right) \% (k-1) \right) \right) \)
        For \(y_2 = x_1+1\) cum \( 2 \leq y_2 \leq k\) is
        \(y_1 = 2 + \left( \left( \left((m_2-1)(k-1)+x_2\right)-1+ \left( (m_2-2)(y_2-2) \right) \right) \% (k-1) \right)\) cum \( 2 \leq y_1 \leq k\).
        Est una tantum solutio hic \( (y_1, y_2) \).
        Quia eligimus \(y^*_2=y_2-1\) ut valorem, is \(y^*_1 = y_1-(k-1) < 2\).
        Praeterea, pro \(y^*_2*=y_2+1\) tunc " \(y^*_1 = y_1+(k-1) > k\).
  • 3. Casus: \( x_1 \geq k \)
    • Casus 3a: \( x_2 \geq k \)
      • Apud 3a ': \(m_1 = \left\lfloor \frac{x_1-1}{k-1} \right\rfloor +1 = \left\lfloor \frac{x_2-1}{k-1} \right\rfloor +1 = m_2\)
        • Pro \(y_1 = 1\) et \(y_2 = 1\) :
          \(f(x_1, y_1) = f(x_1, 1) = m_1\)
          \(f(x_2, y_2) = f(x_2, 1) = m_2 = m_1\)
        • Pro \(y_1 = 1\) et \(y_2 \neq 1\) :
          \(f(x_1, y_1) = f(x_1, 1) = m_1 = \left\lfloor \frac{x_1-1}{k-1} \right\rfloor + 1 \leq \left\lfloor \frac{((k-1) \cdot k)-1}{k-1} \right\rfloor + 1 =\)
          \(\left\lfloor k - \frac{1}{k-1} \right\rfloor + 1 = (k - 1) + 1 = k\)
          \(f(x_2, y_2) = \left( \left((m_2-1)(k-1)+x_2\right)-1+ \left( (m_2-2)(y_2-2) \right) \right) \%\)
          \((k-1) + (k+1) + (k-1)(y_2-2) \geq\)
          \((k+1) + (k-1)(y_2-2) \geq (k+1) > k\)
        • Nam \(y_1 \neq 1\) et \(y_2 = 1\) :
          Vide \(y_1 = 1\) et \(y_2 \neq 1\) .
        • For \(y_1 \neq 1\) et \(y_2 \neq 1\) is:
          \(f(x_1, y_1) = \left( \left((m_1-1)(k-1)+x_1\right)-1+ \left( (m_1-2)(y_1-2) \right) \right) \%\)
          \((k-1) + (k+1) + (k-1)(y_1-2) = L_1 + (k+1) + (k-1)(y_1-2)\)
          \(f(x_2, y_2) = \left( \left((m_2-1)(k-1)+x_2\right)-1+ \left( (m_2-2)(y_2-2) \right) \right) \%\)
          \((k-1) + (k+1) + (k-1)(y_2-2) = L_2 + (k+1) + (k-1)(y_2-2)\)
          Tum \(f(x_1, y_1) = f(x_2, y_2) \Leftrightarrow\)
          \(L_1 + (k+1) + (k-1)(y_1-2) = L_2 + (k+1) + (k-1)(y_2-2) \Leftrightarrow\)
          \(L_1 + (k-1)(y_1-2) = L_2 + (k-1)(y_2-2) \Leftrightarrow\)
          \(L_1 - L_2 = (k-1)(y_2-y_1)\)
          For \(y_1 \neq y_2\) is \(L_1-L_2 \leq (k-2 - 0) = k-2 < (k-1)(y_2-y_1)\).
          For \(y_1 = y_2\) is \(L_1 - L_2 = 0 \Leftrightarrow L_1 = L_2\) et
          \(\left( \left((m_1-1)(k-1)+x_1\right)-1+ \left( (m_1-2)(y_1-2) \right) \right) \% (k-1) =\)
          \(\left( \left((m_2-1)(k-1)+x_2\right)-1+ \left( (m_2-2)(y_2-2) \right) \right) \% (k-1) \Leftrightarrow\)
          \(x_1 = x_2 + (k-1)\cdot l\) contra \(m_1 = m_2\).
      • Causa 3a'': \(m_1 = \left\lfloor \frac{x_1-1}{k-1} \right\rfloor +1 \neq \left\lfloor \frac{x_2-1}{k-1} \right\rfloor +1 = m_2\)
        • Pro \(y_1 = 1\) et \(y_2 = 1\) :
          \(f(x_1, y_1) = f(x_1, 1) = m_1\)
          \(f(x_2, y_2) = f(x_2, 1) = m_2 \neq m_1\)
        • Pro \(y_1 = 1\) et \(y_2 \neq 1\) :
          \(f(x_1, y_1) = f(x_1, 1) = m_1 = \left\lfloor \frac{x_1-1}{k-1} \right\rfloor + 1 \leq \left\lfloor \frac{((k-1) \cdot k)-1}{k-1} \right\rfloor + 1 =\)
          \(\left\lfloor k - \frac{1}{k-1} \right\rfloor + 1 = (k - 1) + 1 = k\)
          \(f(x_2, y_2) = \left( \left((m_2-1)(k-1)+x_2\right)-1+ \left( (m_2-2)(y_2-2) \right) \right) \%\)
          \((k-1) + (k+1) + (k-1)(y_2-2) \geq\)
          \((k+1) + (k-1)(y_2-2) \geq (k+1) > k\)
        • Nam \(y_1 \neq 1\) et \(y_2 = 1\) :
          Vide \(y_1 = 1\) et \(y_2 \neq 1\) .
        • For \(y_1 \neq 1\) et \(y_2 \neq 1\) is:
          \(f(x_1, y_1) = \left( \left((m_1-1)(k-1)+x_1\right)-1+ \left( (m_1-2)(y_1-2) \right) \right) \%\)
          \((k-1) + (k+1) + (k-1)(y_1-2) = L_1 + (k+1) + (k-1)(y_1-2)\)
          \(f(x_2, y_2) = \left( \left((m_2-1)(k-1)+x_2\right)-1+ \left( (m_2-2)(y_2-2) \right) \right) \%\)
          \((k-1) + (k+1) + (k-1)(y_2-2) = L_2 + (k+1) + (k-1)(y_2-2)\)
          Tum \(f(x_1, y_1) = f(x_2, y_2) \Leftrightarrow\)
          \(L_1 + (k+1) + (k-1)(y_1-2) = L_2 + (k+1) + (k-1)(y_2-2) \Leftrightarrow\)
          \(L_1 + (k-1)(y_1-2) = L_2 + (k-1)(y_2-2) \Leftrightarrow\)
          \(L_1 - L_2 = (k-1)(y_2-y_1)\)
          For \(y_1 \neq y_2\) is \(L_1-L_2 \leq (k-2 - 0) = k-2 < (k-1)(y_2-y_1)\).
          For \(y_1 = y_2\) is \(L_1 - L_2 = 0 \Leftrightarrow L_1 = L_2\) et
          \(\left( \left((m_1-1)(k-1)+x_1\right)-1+ \left( (m_1-2)(y_1-2) \right) \right) \% (k-1) =\)
          \(\left( \left((m_2-1)(k-1)+x_2\right)-1+ \left( (m_2-2)(y_2-2) \right) \right) \% (k-1) \Leftrightarrow\)
          \(y = \frac{(k-1)\cdot l + (3-k)(m_2 - m_1) + (x_1 - x_2)}{m_2 - m_1}\)
          Bene ibi \(2 \leq y \leq k\) semper a * \(l \in \mathbb{N}_0\), ut
          \(m_2 - m_1 \mid (k-1)\cdot l + (3-k)(m_2 - m_1) + (x_1 - x_2)\).
          Probatur: ibi \((k-1)\) est prima, est (ob lemmate Bézout).
          \((k-1)\cdot l \equiv -\left( (3-k)(m_2-m_1) + (x_1-x_2) \right) \, \mod (m_2-m_1)\)
          solubilis, quod \(\text{ggT}\left((k-1),(m_2-m_1)\right) = 1\) Scindit \(-\left( (3-k)(m_2-m_1) + (x_1-x_2) \right)\).
          Tum haec sola solutio est \(l_1\), quod pro uno
          \(l_2 = l_1 + (m_2-m_1)\) is \( y_2 = y_1 + (k-1) > k\).

Potes invenire interesting background informationes de argumento dobble et mathematicae hic vel hic . In sequenti scripto videre potes formulam antea probatam in actione: Dobbles (pro \((k-1)\) prim) generari posse cum impulsu globuli.:

See the Pen DOBBLE CREATOR by David Vielhuber (@vielhuber) on CodePen.

Back