Matematik i spillet Dobble

Ved den sidste familieaften blev spillet Dobble (i Harry Potter-udgaven) begejstret bragt på bordet af børnene. Efter den 5. tabte runde (uden synligt hit af mit kort med spillekortet) fik jeg at vide, til min forbavselse, at hver spiller altid kan finde et hit i hver runde. Men min vantro blev kun erkendt med yderligere tabte omgange - børnene var simpelthen hurtigere.


Grund nok til at se nærmere på spillet fra et matematisk synspunkt. Først spilprincippet: Dobble er et simpelt kortspil med \(55\) runde kort, der hver viser otte forskellige symboler. Alle kort uddeles på skift, så kun det sidste kort efterlades i midten af ​​bordet. Nu skal alle spillere samtidigt sammenligne symbolerne på kortet med symbolerne på deres nuværende øverste kort. Hvis en spiller har fundet det samme symbol på begge kort, kan han placere sit kort på stakken ved at være den hurtigste til at navngive symbolet. Den spiller, der kasserer alle deres kort først, vinder.

Hvordan kan det være, at der er \(55\) sådanne kort, der er konstrueret på en sådan måde, at alle 2 kort har præcis ét symbol til fælles? Hvad er det mindste antal af sådanne symboler, der skal bruges? Hvad er det maksimale antal af sådanne kort?

Først konstruerer vi disse kort ved at bruge følgende logiske trin (alle efterfølgende konstruerede kort har den egenskab, at de er sorteret i stigende rækkefølge): Det første kort skal have 8 forskellige symboler, dvs.:

$$\left(\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{array}\right)$$

Vi konstruerer nu de følgende kort på en sådan måde, at de har præcis ét symbol til fælles med det første kort:

$$\left(\begin{array}{c} 1 \\ x_{1.2} \\ x_{1.3} \\ x_{1.4} \\ x_{1.5} \\ x_{1.6} \\ x_{1.7} \\ x_{1.8} \end{array}\right), \left(\begin{array}{c} 1 \\ x_{2.2} \\ x_{2.3} \\ x_{2.4} \\ x_{2.5} \\ x_{2.6} \\ x_{2.7} \\ x_{2.8} \end{array}\right), \left(\begin{array}{c} 1 \\ x_{3.2} \\ x_{3.3} \\ x_{3.4} \\ x_{3.5} \\ x_{3.6} \\ x_{3.7} \\ x_{3.8} \end{array}\right), \ldots, \left(\begin{array}{c} 1 \\ x_{k.2} \\ x_{k.3} \\ x_{k.4} \\ x_{k.5} \\ x_{k.6} \\ x_{k.7} \\ x_{k.8} \end{array}\right)$$

Et hvilket som helst antal af sådanne kort kan allerede konstrueres her (du skal blot udfylde pladserne i stigende rækkefølge, begyndende med \(9\) ). Denne trivielle sag er dog uinteressant, da vi er interesseret i et sæt med et minimum antal symboler (og et maksimum antal kort). Vi betragter nu det andet symbol \( x_{l.2} \) på hvert kort, for hvilket naturligvis følgende skal gælde: \( x_{1.2} \neq x_{2.2} \neq x_{3.2} \neq \ldots \neq x_{k.2} \) . Vi har derfor nødvendigvis introduceret \( k \) nye symboler. Men nu \( k \leq 8-1 = 7 \) , da ingen af \( 7 \) symbolerne \( x_{1.2},\, x_{1.3},\, x_{1.4},\, x_{1.5},\, x_{1.6},\, x_{1.7},\, x_{1.8} \) (på kortet længst til venstre) kan matche det andet symbol på hvert af de andre kort (ellers ville der være to identiske symboler ).

Vi har fundet maksimalt disse 7 nye kort:

$$\left(\begin{array}{c} 1 \\ x_{1.2} \\ x_{1.3} \\ x_{1.4} \\ x_{1.5} \\ x_{1.6} \\ x_{1.7} \\ x_{1.8} \end{array}\right), \left(\begin{array}{c} 1 \\ x_{2.2} \\ x_{2.3} \\ x_{2.4} \\ x_{2.5} \\ x_{2.6} \\ x_{2.7} \\ x_{2.8} \end{array}\right), \left(\begin{array}{c} 1 \\ x_{3.2} \\ x_{3.3} \\ x_{3.4} \\ x_{3.5} \\ x_{3.6} \\ x_{3.7} \\ x_{3.8} \end{array}\right), \left(\begin{array}{c} 1 \\ x_{4.2} \\ x_{4.3} \\ x_{4.4} \\ x_{4.5} \\ x_{4.6} \\ x_{4.7} \\ x_{4.8} \end{array}\right), \left(\begin{array}{c} 1 \\ x_{5.2} \\ x_{5.3} \\ x_{5.4} \\ x_{5.5} \\ x_{5.6} \\ x_{5.7} \\ x_{5.8} \end{array}\right), \left(\begin{array}{c} 1 \\ x_{6.2} \\ x_{6.3} \\ x_{6.4} \\ x_{6.5} \\ x_{6.6} \\ x_{6.7} \\ x_{6.8} \end{array}\right), \left(\begin{array}{c} 1 \\ x_{7.2} \\ x_{7.3} \\ x_{7.4} \\ x_{7.5} \\ x_{7.6} \\ x_{7.7} \\ x_{7.8} \end{array}\right)$$

Med det samme argument konstruerer vi nu de næste \(7\) kort (det første af disse kort skal kollidere med vores startkort, og ikke med \(1\) , ellers ville det være med \(7\) tidligere fundet kort):

$$\left(\begin{array}{c} 2 \\ x_{8.2} \\ x_{8.3} \\ x_{8.4} \\ x_{8.5} \\ x_{8.6} \\ x_{8.7} \\ x_{8.8} \end{array}\right), \left(\begin{array}{c} 2 \\ x_{9.2} \\ x_{9.3} \\ x_{9.4} \\ x_{9.5} \\ x_{9.6} \\ x_{9.7} \\ x_{9.8} \end{array}\right), \left(\begin{array}{c} 2 \\ x_{10.2} \\ x_{10.3} \\ x_{10.4} \\ x_{10.5} \\ x_{10.6} \\ x_{10.7} \\ x_{10.8} \end{array}\right), \left(\begin{array}{c} 2 \\ x_{11.2} \\ x_{11.3} \\ x_{11.4} \\ x_{11.5} \\ x_{11.6} \\ x_{11.7} \\ x_{11.8} \end{array}\right), \left(\begin{array}{c} 2 \\ x_{12.2} \\ x_{12.3} \\ x_{12.4} \\ x_{12.5} \\ x_{12.6} \\ x_{12.7} \\ x_{12.8} \end{array}\right), \left(\begin{array}{c} 2 \\ x_{13.2} \\ x_{13.3} \\ x_{13.4} \\ x_{13.5} \\ x_{13.6} \\ x_{13.7} \\ x_{13.8} \end{array}\right), \left(\begin{array}{c} 2 \\ x_{14.2} \\ x_{14.3} \\ x_{14.4} \\ x_{14.5} \\ x_{14.6} \\ x_{14.7} \\ x_{14.8} \end{array}\right)$$

Dette argument kan også fortsættes for de næste \(7\) kort; I alt \(8-2 = 6\) flere gange. De sidste \(7\) kort er tilsvarende:

$$\left(\begin{array}{c} 8 \\ x_{50.2} \\ x_{50.3} \\ x_{50.4} \\ x_{50.5} \\ x_{50.6} \\ x_{50.7} \\ x_{50.8} \end{array}\right), \left(\begin{array}{c} 8 \\ x_{51.2} \\ x_{51.3} \\ x_{51.4} \\ x_{51.5} \\ x_{51.6} \\ x_{51.7} \\ x_{51.8} \end{array}\right), \left(\begin{array}{c} 8 \\ x_{52.2} \\ x_{52.3} \\ x_{52.4} \\ x_{52.5} \\ x_{52.6} \\ x_{52.7} \\ x_{52.8} \end{array}\right), \left(\begin{array}{c} 8 \\ x_{53.2} \\ x_{53.3} \\ x_{53.4} \\ x_{53.5} \\ x_{53.6} \\ x_{53.7} \\ x_{53.8} \end{array}\right), \left(\begin{array}{c} 8 \\ x_{54.2} \\ x_{54.3} \\ x_{54.4} \\ x_{54.5} \\ x_{54.6} \\ x_{54.7} \\ x_{54.8} \end{array}\right), \left(\begin{array}{c} 8 \\ x_{55.2} \\ x_{55.3} \\ x_{55.4} \\ x_{55.5} \\ x_{55.6} \\ x_{55.7} \\ x_{55.8} \end{array}\right), \left(\begin{array}{c} 8 \\ x_{56.2} \\ x_{56.3} \\ x_{56.4} \\ x_{56.5} \\ x_{56.6} \\ x_{56.7} \\ x_{56.8} \end{array}\right)$$

Hvis du skulle tilføje endnu et kort $$\left(\begin{array}{c} 9 \\ x_{57.2} \\ x_{57.3} \\ x_{57.4} \\ x_{57.5} \\ x_{57.6} \\ x_{57.7} \\ x_{57.8} \end{array}\right)$$ vil mislykkes, fordi dette kort ikke deler et symbol med startkortet. Vi har konstrueret maksimalt \(1 + 8 \cdot 7 = 57\) kort. Vores mål er nu at bygge mindst lige så mange.

For at gøre dette ser vi på de første 7 nye kort fundet og kommer til den konklusion, at vi absolut har brug for \(7 \cdot 7\) nye symboler her (intet kort må have et symbol to gange, og hvert symbol, der skal tildeles, må ikke vises to gange, da \(1\) allerede er dobbelt):

$$\left(\begin{array}{c} 1 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \end{array}\right), \left(\begin{array}{c} 1 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \end{array}\right), \left(\begin{array}{c} 1 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \end{array}\right), \left(\begin{array}{c} 1 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \end{array}\right), \left(\begin{array}{c} 1 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 42 \\ 43 \end{array}\right), \left(\begin{array}{c} 1 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ 50 \end{array}\right), \left(\begin{array}{c} 1 \\ 51 \\ 52 \\ 53 \\ 54 \\ 55 \\ 56 \\ 57 \end{array}\right)$$

Så vi har brug for minimale \(8 + (7 \cdot 7) = 57\) symboler (altså lige så mange symboler som kort!). Vi forsøger nu at klare os med dette tal og finde en konstruktionsregel for alle andre elementer. For at gøre dette konstruerer vi en lidt mindre dobbel, der kun har \(3\) symboler pr. kort og modtager den som startkort

$$\left(\begin{array}{c} 1 \\ 2 \\ 3 \end{array}\right)$$

og de andre kort

$$\left(\begin{array}{c} 1 \\ 4 \\ 5 \end{array}\right), \left(\begin{array}{c} 1 \\ 6 \\ 7 \end{array}\right)$$

$$\left(\begin{array}{c} 2 \\ x_{3.2} \\ x_{3.3} \end{array}\right), \left(\begin{array}{c} 2 \\ x_{4.2} \\ x_{4.3} \end{array}\right)$$

$$\left(\begin{array}{c} 3 \\ x_{5.2} \\ x_{5.3} \end{array}\right), \left(\begin{array}{c} 3 \\ x_{6.2} \\ x_{6.3} \end{array}\right)$$

med i alt \(1 + 3 \cdot 2 = 7\) kort og \( 3 + (2 \cdot 2) = 7\) symboler. Med lidt trial and error (og ved at bruge de allerede tildelte symboler) får du følgende dobbel:

$$\left(\begin{array}{c} 1 \\ 2 \\ 3 \end{array}\right)$$

$$\left(\begin{array}{c} 1 \\ 4 \\ 5 \end{array}\right), \left(\begin{array}{c} 1 \\ 6 \\ 7 \end{array}\right)$$

$$\left(\begin{array}{c} 2 \\ 4 \\ 6 \end{array}\right), \left(\begin{array}{c} 2 \\ 5 \\ 7 \end{array}\right)$$

$$\left(\begin{array}{c} 3 \\ 4 \\ 7 \end{array}\right), \left(\begin{array}{c} 3 \\ 5 \\ 6 \end{array}\right)$$

Kan dette også findes systematisk? For at gøre dette indtaster vi de nyligt tildelte symboler \(4, 5, 6, 7\) i en kvadratisk matrix:

$$\begin{array}{ccc} 4 & & 5 \\ & & \\ 6 & & 7\end{array}$$

Nu forestiller vi os for de to første kort (startende med startsymbolerne \ \(4\) og \(5\) ) lodrette forbindelseslinjer til de nederste symboler \(6\) og \(7\):

$$\begin{array}{ccc} 4 & & 5 \\ \vdots & & \vdots \\ 6 & & 7\end{array}$$

Da disse linjer ikke skærer hinanden, får vi (ved at plotte symbolerne på forbindelseslinjerne linje for linje) de nærmeste gyldige kort:

$$\left(\begin{array}{c} 2 \\ 4 \\ 6 \end{array}\right), \left(\begin{array}{c} 2 \\ 5 \\ 7 \end{array}\right)$$

Til sidst forestiller vi os at forbinde linjer med en anden hældning (i dette tilfælde med hældningen \(1\) ):

$$\begin{array}{ccccc} & 4 & & 5 & \\ \ddots & & \ddots & & \ddots \\ & 6 & & 7 &\end{array}$$

Den anden forbindelseslinje (mellem \(5\) og \(6\) ) forlader matrixen ved højre kant og går ind igen ved venstre kant. Ved dygtigt at vælge hældningen sikrer vi på den ene side, at forbindelseslinjerne ikke skærer hinanden, men også at de tidligere (lodrette) forbindelseslinjer ikke skærer hinanden. Denne designidé fører i sidste ende til følgende designformel:

En dobling med \(k \in \mathbb{N} \, | \, (k-1) \text{ prim} \) har \(1+(k \cdot (k-1)) = k^2-k+1 = k + (k-1)(k-1)\) kort og symboler. For kortet \(K_x\) med \(x \in \mathbb{N}\) og \(0 \leq x \leq (k-1) \cdot k\) gælder:

$$K_x = \left(\begin{array}{c} f(x,1) \\ f(x,2) \\ \vdots \\ f(x,k) \end{array}\right), \,\, m = \left\lfloor \frac{x-1}{k-1} \right\rfloor + 1,$$

$$f(x,y) = \left\{\begin{array}{ll} y & \text{falls } x = 0 \\ \lfloor \frac{x-1}{k-1} \rfloor + 1, &\text{sonst falls } y = 1 \\ (k+1) + (k-1)(x-1) + (y-2), & \text{sonst falls } 0 < x < k \\ \left( \left((m-1)(k-1)+x\right)-1+ \left( (m-2)(y-2) \right) \right) \% (k-1) &\text{sonst} \\ + (k+1) + (k-1)(y-2)&\end{array}\right.$$

Der er \((k-1)\cdot k + 1 = k + (k-1)(k-1)\) stykker af disse kort. Nu er det kun tilbage at vise:

$$ \forall x_1 < x_2 \in \{ 1, \ldots, k+(k-1)(k-1) \} \, \exists \, ! \, y_1, y_2 \in \{ 1, \ldots, k \}: f(x_1, y_1) = f(x_2, y_2) $$

  • 1. sag: \( x_1 = 0 \)
    • Tilfælde 1a: \( 0 < x_2 < k \)
      • For \(y_1 = 1\) og \(y_2 = 1\) :
        \(f(x_1, y_1) = f(0, 1) = 1\)
        \(f(x_2, y_2) = f(x_2, 1) = \lfloor \frac{x_2-1}{k-1} \rfloor + 1 = 1\) .
      • For \(y_1 \neq 1\) og \(y_2 = 1\) :
        \(f(x_1, y_1) = f(0, y_1) = y_1 \neq 1\)
        \(f(x_2, y_2) = f(x_2, y_2) = \lfloor \frac{x_2-1}{k-1} \rfloor + 1 = 1\)
      • For \(y_1 = 1\) og \(y_2 \neq 1\) :
        \(f(x_1, y_1) = f(0, 1) = 1\)
        \(f(x_2, y_2) = f(x_2, y_2) = (k+1) + (k-1)(x-1) + (y-2) =\)
        \((k+1)(x-1) + (k-1) + y \geq (k+1)(x-1)+y > 1\)
      • For \(y_1 \neq 1\) og \(y_2 \neq 1\) er:
        \(f(x_1, y_1) = f(0, y_1) = y_1 \leq k\)
        \(f(x_2, y_2) = f(x_2, y_2) = (k+1) + (k-1)(x-1) + (y-2) > k\)
    • Tilfælde 1b: \( x_2 \geq k \)
      • For \(y_1 = \left\lfloor \frac{x_2-1}{k-1} \right\rfloor + 1\) og \(y_2 = 1\) har vi:
        \(f(x_1, y_1) = f(0, \left\lfloor \frac{x_2-1}{k-1} \right\rfloor + 1) = \left\lfloor \frac{x_2-1}{k-1} \right\rfloor + 1\)
        \(f(x_2, y_2) = f(x_2, 1) = \left\lfloor \frac{x_2-1}{k-1} \right\rfloor + 1\)
      • For \(y_1 \neq \left\lfloor \frac{x_2-1}{k-1} \right\rfloor + 1\) og \(y_2 = 1\) er:
        \(f(x_1, y_1) = f(0, y_1) = y_1 \neq \left\lfloor \frac{x_2-1}{k-1} \right\rfloor + 1\)
        \(f(x_2, y_2) = f(x_2, 1) = \left\lfloor \frac{x_2-1}{k-1} \right\rfloor + 1\)
      • For \(y_2 \neq 1\) er:
        \(f(x_1, y_1) = f(0, y_1) = y_1 \leq k\)
        \(f(x_2, y_2) = \left( \left((m_2-1)(k-1)+x_2\right)-1+ \left( (m_2-2)(y_2-2) \right) \right) \% (k-1)\)
        \(+ (k+1) + (k-1)(y_2-2) \geq (k+1)+(k-1)(y_2-2) > k \)
  • 2. sag: \( 0 < x_1 < k \)
    • Tilfælde 2a: \( 0 < x_2 < k \)
      • For \(y_1 = 1\) og \(y_2 = 1\) :
        \(f(x_1, y_1) = f(x_1, 1) = \left\lfloor \frac{x_1-1}{k-1} \right\rfloor + 1 = 1\)
        \(f(x_2, y_2) = f(x_2, 1) = \left\lfloor \frac{x_2-1}{k-1} \right\rfloor + 1 = 1\)
      • For \(y_1 \neq 1\) og \(y_2 = 1\) :
        \(f(x_1, y_1) = f(x_1, y_1) = (k+1)+(k-1)(x_1-1)+(y_1-2) > 1\)
        \(f(x_2, y_2) = f(x_2, 1) = \left\lfloor \frac{x_2-1}{k-1} \right\rfloor + 1 = 1\)
      • For \(y_1 = 1\) og \(y_2 \neq 1\) :
        \(f(x_1, y_1) = f(x_1, 1) = \left\lfloor \frac{x_1-1}{k-1} \right\rfloor + 1 = 1\)
        \(f(x_2, y_2) = f(x_2, y_2) = (k+1)+(k-1)(x_2-1)+(y_2-2) > 1\)
      • For \(y_1 \neq 1\) og \(y_2 \neq 1\) er:
        \(f(x_1, y_1) = (k+1)+(k-1)(x_1-1)+(y_1-2) \leq\)
        \((k+1)+(k-1)(x_1-1)+(k-2)\)
        \(f(x_2, y_2) = (k+1)+(k-1)(x_2-1)+(y_2-2) \geq\)
        \((k+1)+(k-1)((x_1+1)-1)+(y_2-2) =\)
        \((k+1)+(k-1)(x_1-1) + (k-1) + (y_2-2) \geq\)
        \((k+1)+(k-1)(x_1-1) + (k-1) + (2-2) \geq\)
        \((k+1)+(k-1)(x_1-1) + (k-1) > (k+1)+(k-1)(x_1-1) + (k-2)\)
    • Tilfælde 2b: \( x_2 \geq k \)
      • For \(y_1 = 1\) og \(y_2 = 1\) :
        \(f(x_1, y_1) = f(x_1, 1) = \left\lfloor \frac{x_1-1}{k-1} \right\rfloor + 1 = 1\)
        \(f(x_2, y_2) = f(x_2, 1) = \left\lfloor \frac{x_2-1}{k-1} \right\rfloor + 1 \geq \left\lfloor \frac{k-1}{k-1} \right\rfloor + 1 = 2 > 1\)
      • For \(y_1 = 1\) og \(y_2 \neq 1\) :
        \(f(x_1, y_1) = f(x_1, 1) = \left\lfloor \frac{x_1-1}{k-1} \right\rfloor + 1 = 1\)
        \(f(x_2, y_2) = \left( \left((m_2-1)(k-1)+x_2\right)-1+ \left( (m_2-2)(y_2-2) \right) \right) \% (k-1)\)
        \(+ (k+1) + (k-1)(y_2-2) \geq (k+1) + (k-1)(y_2-2) > 1\)
      • For \(y_1 \neq 1\) og \(y_2 = 1\) :
        \(f(x_1, y_1) = \left( \left((m_1-1)(k-1)+x_1\right)-1+ \left( (m_1-2)(y_1-2) \right) \right) \% (k-1)\)
        \(+ (k+1) + (k-1)(y_1-2) \geq (k+1) + (k-1)(y_1-2) > 1\)
        \(f(x_2, y_2) = f(x_2, 1) = \left\lfloor \frac{x_2-1}{k-1} \right\rfloor + 1 = 1\)
      • Til \(y_1 \neq 1\) og \(y_2 \neq 1\) er:
        \((k+1) + (k-1)(x_1-1) + (y_1-2) =\)
        \(\left( \left((m_2-1)(k-1)+x_2\right)-1+ \left( (m_2-2)(y_2-2) \right) \right) \% (k-1)\)
        \(+ (k+1) + (k-1)(y-2)\)
        \(\Leftrightarrow y_1 = (k-1)y_2 - (k-1)(x_1+1) +\)
        \(\left( 2 + \left( \left( \left((m_2-1)(k-1)+x_2\right)-1+ \left( (m_2-2)(y_2-2) \right) \right) \% (k-1) \right) \right) \)
        Til \(y_2 = x_1+1\) med \( 2 \leq y_2 \leq k\) er
        \(y_1 = 2 + \left( \left( \left((m_2-1)(k-1)+x_2\right)-1+ \left( (m_2-2)(y_2-2) \right) \right) \% (k-1) \right)\) med \( 2 \leq y_1 \leq k\).
        Der er kun én løsning her \( (y_1, y_2) \).
        Fordi vi vælger \(y^*_2=y_2-1\) som værdi, er \(y^*_1 = y_1-(k-1) < 2\).
        Desuden for \(y^*_2*=y_2+1\) derefter \(y^*_1 = y_1+(k-1) > k\).
  • 3. Sag: \( x_1 \geq k \)
    • Tilfælde 3a: \( x_2 \geq k \)
      • Tilfælde 3a': \(m_1 = \left\lfloor \frac{x_1-1}{k-1} \right\rfloor +1 = \left\lfloor \frac{x_2-1}{k-1} \right\rfloor +1 = m_2\)
        • For \(y_1 = 1\) og \(y_2 = 1\) :
          \(f(x_1, y_1) = f(x_1, 1) = m_1\)
          \(f(x_2, y_2) = f(x_2, 1) = m_2 = m_1\)
        • For \(y_1 = 1\) og \(y_2 \neq 1\) :
          \(f(x_1, y_1) = f(x_1, 1) = m_1 = \left\lfloor \frac{x_1-1}{k-1} \right\rfloor + 1 \leq \left\lfloor \frac{((k-1) \cdot k)-1}{k-1} \right\rfloor + 1 =\)
          \(\left\lfloor k - \frac{1}{k-1} \right\rfloor + 1 = (k - 1) + 1 = k\)
          \(f(x_2, y_2) = \left( \left((m_2-1)(k-1)+x_2\right)-1+ \left( (m_2-2)(y_2-2) \right) \right) \%\)
          \((k-1) + (k+1) + (k-1)(y_2-2) \geq\)
          \((k+1) + (k-1)(y_2-2) \geq (k+1) > k\)
        • For \(y_1 \neq 1\) og \(y_2 = 1\) :
          Se \(y_1 = 1\) og \(y_2 \neq 1\) .
        • Til \(y_1 \neq 1\) og \(y_2 \neq 1\) er:
          \(f(x_1, y_1) = \left( \left((m_1-1)(k-1)+x_1\right)-1+ \left( (m_1-2)(y_1-2) \right) \right) \%\)
          \((k-1) + (k+1) + (k-1)(y_1-2) = L_1 + (k+1) + (k-1)(y_1-2)\)
          \(f(x_2, y_2) = \left( \left((m_2-1)(k-1)+x_2\right)-1+ \left( (m_2-2)(y_2-2) \right) \right) \%\)
          \((k-1) + (k+1) + (k-1)(y_2-2) = L_2 + (k+1) + (k-1)(y_2-2)\)
          Derefter \(f(x_1, y_1) = f(x_2, y_2) \Leftrightarrow\)
          \(L_1 + (k+1) + (k-1)(y_1-2) = L_2 + (k+1) + (k-1)(y_2-2) \Leftrightarrow\)
          \(L_1 + (k-1)(y_1-2) = L_2 + (k-1)(y_2-2) \Leftrightarrow\)
          \(L_1 - L_2 = (k-1)(y_2-y_1)\)
          Til \(y_1 \neq y_2\) er \(L_1-L_2 \leq (k-2 - 0) = k-2 < (k-1)(y_2-y_1)\).
          Til \(y_1 = y_2\) er \(L_1 - L_2 = 0 \Leftrightarrow L_1 = L_2\) og
          \(\left( \left((m_1-1)(k-1)+x_1\right)-1+ \left( (m_1-2)(y_1-2) \right) \right) \% (k-1) =\)
          \(\left( \left((m_2-1)(k-1)+x_2\right)-1+ \left( (m_2-2)(y_2-2) \right) \right) \% (k-1) \Leftrightarrow\)
          \(x_1 = x_2 + (k-1)\cdot l\) i modstrid med \(m_1 = m_2\).
      • Tilfælde 3a'': \(m_1 = \left\lfloor \frac{x_1-1}{k-1} \right\rfloor +1 \neq \left\lfloor \frac{x_2-1}{k-1} \right\rfloor +1 = m_2\)
        • For \(y_1 = 1\) og \(y_2 = 1\) :
          \(f(x_1, y_1) = f(x_1, 1) = m_1\)
          \(f(x_2, y_2) = f(x_2, 1) = m_2 \neq m_1\)
        • For \(y_1 = 1\) og \(y_2 \neq 1\) :
          \(f(x_1, y_1) = f(x_1, 1) = m_1 = \left\lfloor \frac{x_1-1}{k-1} \right\rfloor + 1 \leq \left\lfloor \frac{((k-1) \cdot k)-1}{k-1} \right\rfloor + 1 =\)
          \(\left\lfloor k - \frac{1}{k-1} \right\rfloor + 1 = (k - 1) + 1 = k\)
          \(f(x_2, y_2) = \left( \left((m_2-1)(k-1)+x_2\right)-1+ \left( (m_2-2)(y_2-2) \right) \right) \%\)
          \((k-1) + (k+1) + (k-1)(y_2-2) \geq\)
          \((k+1) + (k-1)(y_2-2) \geq (k+1) > k\)
        • For \(y_1 \neq 1\) og \(y_2 = 1\) :
          Se \(y_1 = 1\) og \(y_2 \neq 1\) .
        • Til \(y_1 \neq 1\) og \(y_2 \neq 1\) er:
          \(f(x_1, y_1) = \left( \left((m_1-1)(k-1)+x_1\right)-1+ \left( (m_1-2)(y_1-2) \right) \right) \%\)
          \((k-1) + (k+1) + (k-1)(y_1-2) = L_1 + (k+1) + (k-1)(y_1-2)\)
          \(f(x_2, y_2) = \left( \left((m_2-1)(k-1)+x_2\right)-1+ \left( (m_2-2)(y_2-2) \right) \right) \%\)
          \((k-1) + (k+1) + (k-1)(y_2-2) = L_2 + (k+1) + (k-1)(y_2-2)\)
          Derefter \(f(x_1, y_1) = f(x_2, y_2) \Leftrightarrow\)
          \(L_1 + (k+1) + (k-1)(y_1-2) = L_2 + (k+1) + (k-1)(y_2-2) \Leftrightarrow\)
          \(L_1 + (k-1)(y_1-2) = L_2 + (k-1)(y_2-2) \Leftrightarrow\)
          \(L_1 - L_2 = (k-1)(y_2-y_1)\)
          Til \(y_1 \neq y_2\) er \(L_1-L_2 \leq (k-2 - 0) = k-2 < (k-1)(y_2-y_1)\).
          Til \(y_1 = y_2\) er \(L_1 - L_2 = 0 \Leftrightarrow L_1 = L_2\) og
          \(\left( \left((m_1-1)(k-1)+x_1\right)-1+ \left( (m_1-2)(y_1-2) \right) \right) \% (k-1) =\)
          \(\left( \left((m_2-1)(k-1)+x_2\right)-1+ \left( (m_2-2)(y_2-2) \right) \right) \% (k-1) \Leftrightarrow\)
          \(y = \frac{(k-1)\cdot l + (3-k)(m_2 - m_1) + (x_1 - x_2)}{m_2 - m_1}\)
          Godt der for \(2 \leq y \leq k\) altid a \(l \in \mathbb{N}_0\), så det
          \(m_2 - m_1 \mid (k-1)\cdot l + (3-k)(m_2 - m_1) + (x_1 - x_2)\).
          Bevis: der \((k-1)\) er prime, er (på grund af Bézouts lemma)
          \((k-1)\cdot l \equiv -\left( (3-k)(m_2-m_1) + (x_1-x_2) \right) \, \mod (m_2-m_1)\)
          løseligt, fordi \(\text{ggT}\left((k-1),(m_2-m_1)\right) = 1\) Spaltninger \(-\left( (3-k)(m_2-m_1) + (x_1-x_2) \right)\).
          Så er dette den eneste løsning \(l_1\), fordi for en
          \(l_2 = l_1 + (m_2-m_1)\) er \( y_2 = y_1 + (k-1) > k\).

Du kan også finde interessant baggrundsinformation om emnet dobble og matematik her eller her . I det følgende script kan du se den tidligere beviste formel i aktion: Dobbles (for \((k-1)\) prim) kan genereres med et tryk på en knap:

See the Pen DOBBLE CREATOR by David Vielhuber (@vielhuber) on CodePen.

Tilbage