Kanye no- Xovi, ithuluzi le- SISTRIX wuhlelo lokuhlaziya olusetshenziswa kakhulu eJalimane endaweni ye-SEO. Inkomba yokubonakala izimise njengezinga elilinganayo lokubonakala kwekhasi kusesho lwe-Google. Imingcele efakwe ekubalweni kwayo, isibonelo , ichazwe lapha nalapha futhi lapha nalapha nalapha , kodwa ifomula yokubala eqondile ayishicilelwa ngokusemthethweni. Okulandelayo yimiphumela yocwaningo lwami lomuntu siqu lwezinyanga eziyisithupha, olungasho ukuthi luphelele noma alulungile.
Nge
- \(A_l\): Isethi yegama elingukhiye le-SISTRIX (inani elihlungiwe lamagama angukhiye achazwe ngokuqinile wezwe elithile, isethi ihlanganisa njalo - ngokusekelwe kuthrafikhi ngokusekelwe esilinganisweni sezinyanga ezingu-12 - kanye nengxenye encane, ehlukahlukeneyo)
- \(\vert A_l \vert\) : \(A_l\) nge \(A_l\) \(\vert A_{DE} \vert = 1.000.000\) (isimo: 01.10.2021)
- \(k \in A_l\): Igama elingukhiye livaliwe \(A_l\)
- \(u\): I-URL (izohunyushwa njengesizinda, isizinda esingaphansi, uhla lwemibhalo, i-URL ngayinye, kuye ngefomethi)
- \(r_{uklgt}\) : \(r_{uklgt}\) le-URL \(u\) emiphumeleni yosesho ephilayo yenjini yosesho ye-Google yegama elingukhiye \(k\) ezweni \(l\) ohlotsheni lwedivayisi \(g\) ngaleso sikhathi \(t\)
- \(s_{klgt}\) : Ivolumu yosesho (isilinganiso semibuzo yosesho ngenyanga ngedatha evela ku-SISTRIX, hhayi evela ku- Google Keyword Planner , kodwa, ngokwesitatimende sethu, eqoqwe kubathengisi bedatha bangaphandle abangaphezu kweshumi nambili) yegama elingukhiye \(k\) im Country \(l\) ohlotsheni lwedivayisi \(g\) ngesikhathi \(t\)
- \(c_{uklgt}\) : Ukuchofoza okulinganiselwe ku-URL \(u\) yegama elingukhiye \(k\) ezweni \(l\) ohlotsheni lwedivayisi \(g\) ngaleso sikhathi \(t\)
- \(l \in L=\{DE;...;JP\}\) : Izwe eline \(\vert L \vert=30\) (kusukela: 01.06.2021)
- \(g\in\{D;M\}\): Uhlobo lwedivayisi (ideskithophu / iselula)
- \(t\): Isikhathi (idethi ngo-00:00:00 a.m.)
- \(S_{ulgt}\) : I-SISTRIX inkomba yokubonakala ye-URL \(u\) yezwe \(l\) ohlotsheni lwedivayisi \(g\) ngaleso sikhathi \(t\)
- \(W_S = \, \mathbb{Q}^{+}_{0}\) yamanani \(W_S = \, \mathbb{Q}^{+}_{0}\)
kuyasebenza
$$S_{ulgt} = \sum_{k=1}^{\vert A_l \vert} f(r_{uklgt}, c_{uklgt})$$
nge
$$\begin{multline} \mathbb{N_0} \times \mathbb{Q}^{+}_{0} \to \, \mathbb{Q}^{+}_{0}, f(r, c) = ((1-\text{sgn}(r - 1)^2) \cdot ((1-\text{ceil}(0.5 \cdot \text{sgn}(c-34{,}4796))) \cdot 0{,}0194 + \\ (\text{ceil}(0.5 \cdot \text{sgn}(c-34{,}4796))) \cdot ((1+\text{floor}(0.5 \cdot \text{sgn}(c-378{,}325))) \cdot 0{,}125 - \\ (\text{floor}(0.5 \cdot \text{sgn}(c-378{,}325))) \cdot (0{,}0004 \cdot c + 0{,}0119)))) + (\text{sgn}(r-1)^2 \cdot \\ ((1-\text{sgn}(r - 2)^2) \cdot ((1-\text{ceil}(0.5 \cdot \text{sgn}(c-17{,}418))) \cdot 0{,}0136 + \\ (\text{ceil}(0.5 \cdot \text{sgn}(c-17{,}418))) \cdot ((1+\text{floor}(0.5 \cdot \text{sgn}(c-230{,}6839))) \cdot 0{,}125 - \\ (\text{floor}(0.5 \cdot \text{sgn}(c-230{,}6839))) \cdot (0{,}0006 \cdot c + 0{,}0035)))) + (\text{sgn}(r-2)^2 \cdot \\ ((1-\text{sgn}(r - 3)^2) \cdot ((1-\text{ceil}(0.5 \cdot \text{sgn}(c-11{,}0236))) \cdot 0{,}0098 + \\ (\text{ceil}(0.5 \cdot \text{sgn}(c-11{,}0236))) \cdot ((1+\text{floor}(0.5 \cdot \text{sgn}(c-231{,}3121))) \cdot 0{,}125 - \\ (\text{floor}(0.5 \cdot \text{sgn}(c-231{,}3121))) \cdot (0{,}0006 \cdot c + 0{,}0025)))) + (\text{sgn}(r-3)^2 \cdot \\ ((1-\text{sgn}(r - 4)^2) \cdot ((1-\text{ceil}(0.5 \cdot \text{sgn}(c-8{,}8619))) \cdot 0{,}0077 + \\ (\text{ceil}(0.5 \cdot \text{sgn}(c-8{,}8619))) \cdot ((1+\text{floor}(0.5 \cdot \text{sgn}(c-219{,}6195))) \cdot 0{,}125 - \\ (\text{floor}(0.5 \cdot \text{sgn}(c-219{,}6195))) \cdot (0{,}0006 \cdot c + 0{,}002)))) + (\text{sgn}(r-4)^2 \cdot \\ ((1-\text{sgn}(r - 5)^2) \cdot ((1-\text{ceil}(0.5 \cdot \text{sgn}(c-8{,}0684))) \cdot 0{,}0068 + \\ (\text{ceil}(0.5 \cdot \text{sgn}(c-8{,}0684))) \cdot ((1+\text{floor}(0.5 \cdot \text{sgn}(c-249{,}3706))) \cdot 0{,}125 - \\ (\text{floor}(0.5 \cdot \text{sgn}(c-249{,}3706))) \cdot (0{,}0006 \cdot c + 0{,}0017)))) + (\text{sgn}(r-5)^2 \cdot \\ ((1-\text{sgn}(r - 6)^2) \cdot ((1-\text{ceil}(0.5 \cdot \text{sgn}(c-5{,}357))) \cdot 0{,}0058 + \\ (\text{ceil}(0.5 \cdot \text{sgn}(c-5{,}357))) \cdot ((1+\text{floor}(0.5 \cdot \text{sgn}(c-133{,}2103))) \cdot 0{,}1011 - \\ (\text{floor}(0.5 \cdot \text{sgn}(c-133{,}2103))) \cdot (0{,}0007 \cdot c + 0{,}0015)))) + (\text{sgn}(r-6)^2 \cdot \\ ((1-\text{sgn}(r - 7)^2) \cdot ((1-\text{ceil}(0.5 \cdot \text{sgn}(c-4{,}3643))) \cdot 0{,}0049 + \\ (\text{ceil}(0.5 \cdot \text{sgn}(c-4{,}3643))) \cdot ((1+\text{floor}(0.5 \cdot \text{sgn}(c-90{,}3704))) \cdot 0{,}0727 - \\ (\text{floor}(0.5 \cdot \text{sgn}(c-90{,}3704))) \cdot (0{,}0008 \cdot c + 0{,}0013)))) + (\text{sgn}(r-7)^2 \cdot \\ ((1-\text{sgn}(r - 8)^2) \cdot ((1-\text{ceil}(0.5 \cdot \text{sgn}(c-3{,}3292))) \cdot 0{,}0039 + \\ (\text{ceil}(0.5 \cdot \text{sgn}(c-3{,}3292))) \cdot ((1+\text{floor}(0.5 \cdot \text{sgn}(c-87{,}6123))) \cdot 0{,}0706 - \\ (\text{floor}(0.5 \cdot \text{sgn}(c-87{,}6123))) \cdot (0{,}0008 \cdot c + 0{,}0011)))) + (\text{sgn}(r-8)^2 \cdot \\ ((1-\text{sgn}(r - 9)^2) \cdot ((1-\text{ceil}(0.5 \cdot \text{sgn}(c-2{,}944))) \cdot 0{,}0029 + \\ (\text{ceil}(0.5 \cdot \text{sgn}(c-2{,}944))) \cdot ((1+\text{floor}(0.5 \cdot \text{sgn}(c-75{,}6014))) \cdot 0{,}0515 - \\ (\text{floor}(0.5 \cdot \text{sgn}(c-75{,}6014))) \cdot (0{,}0007 \cdot c + 0{,}0012)))) + (\text{sgn}(r-9)^2 \cdot \\ ((1-\text{sgn}(r - 10)^2) \cdot ((1-\text{ceil}(0.5 \cdot \text{sgn}(c-2{,}4797))) \cdot 0{,}0019 + \\ (\text{ceil}(0.5 \cdot \text{sgn}(c-2{,}4797))) \cdot ((1+\text{floor}(0.5 \cdot \text{sgn}(c-36{,}7911))) \cdot 0{,}0199 - \\ (\text{floor}(0.5 \cdot \text{sgn}(c-36{,}7911))) \cdot (0{,}0005 \cdot c + 0{,}0005)))) + (\text{sgn}(r-10)^2 \cdot 0)))))))))) \end{multline}$$
Le fomula ikhishwe kakhulukazi ubunjiniyela obuhlehlayo ngosizo olukhulu lwe- SISTRIX A PI esemthethweni. Umqondo oyisisekelo wawuwukuthi: Yehlisa inkinga ibe izibonelo ezilula (thola ama-URL anenkomba yokubonakala enhle enegama elingukhiye elilodwa kuphela / amabili / amathathu / ...) bese uzama ukukhiqiza kabusha izimo eziyinkimbinkimbi.
Izici zenkomba yokubonakala:
- Amagama angukhiye kuphela "wesethi yegama elingukhiye elihlala njalo" lamagama angukhiye angu-1,000,000 afakiwe kunkomba yokubonakala, hhayi amagama angukhiye "wedatha egciniwe ephelele" ekhula njalo (evumelana nezimo nezimo zamanje), okwamanje okuhlanganisa amagama angukhiye angu-100,000,000 (Kusukela ngo-Okthoba 1, 2021). Amaqembu alandelayo wamagama angukhiye angahlungwa kalula ngokukhetha inani ngaphansi kokuthi "Idethi" noma ngokusetha inani elinwetshiwe libe ngu- 0 ku-API. Idatha ejwayelekile noma idatha yomlando ayishintshile futhi iqoqwe maviki onke kusukela ngo-2008, manje nsuku zonke.
- Amahithi e-AMP awafakiwe kunkomba yokubonakala.
- Kutuswa ukuthi uqale ngokuhlaziya emazweni asanda kudalwa njenge-Romania, Croatia, Slovenia & Bulgaria noma ngokwakha eyakho inkomba yokubonakala . Isizathu salokhu ukuthi i-SISTRIX ihambisana nayo "i-ballast yomlando" emazweni afana neJalimane, okusho ukuthi amagama angukhiye ayevame ukunikezwa isisindo esiphezulu asetshenziswa ngisho nangaphezu kwalokho umuntu angakulindela, naphezu (futhi isikhathi eside ) ivolumu yokusesha ephansi. Ngokusho kokusekelwa, yonke into kufanele ilungiswe kancane kancane futhi ingasabonakali esikhathini eside.
- Ngokuphambene nokucabangela kwami kwasekuqaleni, ivolumu yosesho idlala indima engaqondile kuphela kunkomba yokubonakala. Kunalokho, ukuchofoza okulindelekile kubalulekile. Ubudlelwano phakathi kwevolumu yosesho nokuchofoza okulinganiselwe kusekelwe kakhulu enhlosweni yokusesha elinganiselwe , nayo ebonisiwe. I-SISTRIX ngokwayo ikhomba lokhu ngokusobala .
- Ukuchofoza okulindelekile kuyisici esishayelayo ngemuva kwe-Visibility Index. Umthelela wabo uhlanganiswe phezulu naphansi, ukuze inkomba yokubonakala ihlale isebenza phakathi komkhawulo ongaphezulu nophansi kanye nomugqa phakathi kwawo.
- Ukuchofoza akukwazi ukufinyelelwa nge-API esemthethweni, kodwa kuphela ngesixhumi esibonakalayo sewebhu noma ngokuthekelisa kwe-CSV okwenziwa ngesandla. Kuzo zombili izimo, amanani ayindilinga, kodwa i-DOM yokubuka "Amagama angukhiye" nayo iqukethe amanani okuqala.:
Ifomula elandelayo ingasetshenziswa futhi ku-Excel noma ku-Google AmaSpredishithi; Ibala inkomba yokubonakala yeshidi lokusebenza lapho irowu ngayinye iqukethe igama elingukhiye elinendawo yalo kukholomu A kanye nokuchofoza kwalo okulindelekile kukholomu B.:
=SUMME(WENN(A1:A999999=1;WENN(B1:B999999=378,32500379436;0,125;(0,00037306471297181*B1:B999999+0,011944496557952))); WENN(A1:A999999=2;WENN(B1:B999999=230,68394113271;0,125;(0,00055449577110866*B1:B999999+0,0035350976909409))); WENN(A1:A999999=3;WENN(B1:B999999=231,31214231278;0,125;(0,00059715499256153*B1:B999999+0,0025455442270028))); WENN(A1:A999999=4;WENN(B1:B999999=219,61948739302;0,125;(0,00063710437878404*B1:B999999+0,0020405503130787))); WENN(A1:A999999=5;WENN(B1:B999999=249,37064996217;0,125;(0,00058906284391034*B1:B999999+0,0017391721053351))); WENN(A1:A999999=6;WENN(B1:B999999=133,21031841331;0,1011;(0,00074744619531311*B1:B999999+0,0015021940435474))); WENN(A1:A999999=7;WENN(B1:B999999=90,370431493381;0,0727;(0,00078977592541601*B1:B999999+0,0012962057526498))); WENN(A1:A999999=8;WENN(B1:B999999=87,612293584114;0,0706;(0,00079399080394233*B1:B999999+0,0010648385910406))); WENN(A1:A999999=9;WENN(B1:B999999=75,601377547472;0,0515;(0,00066458507066795*B1:B999999+0,0011972721128791))); WENN(A1:A999999=10;WENN(B1:B999999=36,79114711734;0,0199;(0,00052397754322654*B1:B999999+0,00053850952142599))); 0)))))))))))
Lokhu kuvumela ukuthi kukhiqizwe imiphumela elandelayo:
Izwe | Idivayisi | Usuku | \(S_{echt}\) | \(S_{berechnet}\) | \(\Delta\) | \(\Delta_{\%}\) | Url / umkhombandlela |
SI | M. | 29.10.21 | \( 0{,}1348 \) | \( 0{,}1348 \) | \( 0{,}0000 \) | \( 0{,}00% \) | https://support.google.com/youtube/?hl=sl |
SI | M. | 29.10.21 | \( 0{,}2156 \) | \( 0{,}2155 \) | \( 0{,}0001 \) | \( 0{,}05% \) | https://Me.twitter.com/youtube |
SI | M. | 29.10.21 | \( 0{,}3746 \) | \( 0{,}3740 \) | \( 0{,}0006 \) | \( 0{,}16% \) | https://sl.m.wikipedia.org/wiki/YouTube |
SI | M. | 29.10.21 | \( 0{,}6771 \) | \( 0{,}6760 \) | \( 0{,}0011 \) | \( 0{,}16% \) | https://m.facebook.com/youtube/ |
SI | M. | 29.10.21 | \( 0{,}6836 \) | \( 0{,}6830 \) | \( 0{,}0006 \) | \( 0{,}09% \) | https://x2convert.com/en117/download-youtube-to-mp3-music |
SI | M. | 29.10.21 | \( 0{,}7636 \) | \( 0{,}7555 \) | \( 0{,}0081 \) | \( 1{,}06% \) | https://www.youtubekids.com/ |
SI | M. | 29.10.21 | \( 0{,}8749 \) | \( 0{,}8730 \) | \( 0{,}0019 \) | \( 0{,}22% \) | https://www.4kdownload.com/products/youtubetomp3/6 |
SI | M. | 29.10.21 | \( 4{,}0020 \) | \( 3{,}9980 \) | \( 0{,}0040 \) | \( 0{,}10% \) | https://ytmp3.cc/en23/ |
SI | M. | 29.10.21 | \( 8{,}0520 \) | \( 8{,}0520 \) | \( 0{,}0000 \) | \( 0{,}00% \) | https://support.google.com/youtube/ |
SI | M. | 29.10.21 | \( 11{,}6600 \) | \( 11{,}6100 \) | \( 0{,}0500 \) | \( 0{,}43% \) | https://m.facebook.com/events/ |
SI | M. | 29.10.21 | \( 19{,}7000 \) | \( 19{,}6890 \) | \( 0{,}0110 \) | \( 0{,}06% \) | https://minecraft.fandom.com/wiki/ |
SI | M. | 29.10.21 | \( 32{,}5900 \) | \( 32{,}5890 \) | \( 0{,}0010 \) | \( 0{,}00% \) | https://hr.m.wikipedia.org/wiki/ |
RO | M. | 29.10.21 | \( 0{,}1516 \) | \( 0{,}1516 \) | \( 0{,}0000 \) | \( 0{,}00% \) | https://lol.fandom.com/wiki/LCK/2021_Season/Summer_Season |
Mnu | M. | 29.10.21 | \( 0{,}2191 \) | \( 0{,}2190 \) | \( 0{,}0000 \) | \( 0{,}00% \) | https://starwars.fandom.com/wiki/Mandalorian |
BG | M. | 03.11.21 | \( 0{,}3703 \) | \( 0{,}3702 \) | \( 0{,}0001 \) | \( 0{,}03% \) | https://leagueoflegends.fandom.com/wiki/List_of_champions |
Umehluko phakathi kwamanani angempela nabaliwe ubangelwa amaphutha okufinyezwa kanye nesethi yedatha elinganiselwe lapho ukuqeqeshwa kwemodeli kusekelwe khona. Lezi zitatimende ezingenhla zingasebenza njengesisekelo sokuqhubeka nokucwenga ifomula futhi, isibonelo, ukubala ubudlelwano phakathi kwevolumu yosesho nokuchofoza okulindelekile. Uma unentshisekelo ngemibhalo evele ngesikhathi socwaningo lwami, ngicela ukhululeke ukuxhumana nami .