# Bis aetatis duorum hominum1017

Duo considerare $$A$$ et $$B$$ qui eodem die nati $$A$$ minor $$B$$ . Monstra: Sunt duo annos prorsus constellations $$a,b \in \mathbb{N}$$ : Quae est: $$2\cdot a = b$$ . Nos prius set $$d \in \mathbb{R}^+$$ ut aetatis differentia inter $$A$$ et $$B$$ in partu autem $$A$$ et $$d = d_0 + d_1$$ , $$d_0 \in \mathbb{N}_0, d_1 \in \mathbb{R}, d_1 \in [0;1[$$ . Nos Nunc considero punctum tempore $$x \in \mathbb{R}^+$$ Post cujus ortum $$A$$ et $$x = x_0 + x_1$$ : $$x_0 \in \mathbb{N}_0, x_1 \in \mathbb{R}, x_1 \in [0;1[$$ .

At iam hoc tempore per definitionem: $$a = \lfloor x \rfloor$$ et $$b = \lfloor x+d \rfloor$$ . Nunc definiri $$x$$ quam habet:

$$2 \lfloor x \rfloor = \lfloor x+d \rfloor \Leftrightarrow 2 \lfloor x_0 + x_1 \rfloor = \lfloor x_0 + x_1 + d_0 + d_1 \rfloor$$

1 si: $$0 \leq x_1 + d_1 < 1$$:

Et $$2 \lfloor x_0 + x_1 \rfloor = \lfloor x_0 + d_0 + \underbrace{x_1 + d_1}_{< 1} \rfloor \Leftrightarrow 2 x_0 = x_0 + d_0 \Leftrightarrow x_0 = d_0.$$

Et hoc modo, quod $$a = \lfloor x \rfloor = \lfloor x_0 + x_1 \rfloor = \lfloor d_0 + x_1 \rfloor = d_0$$ et $$b = \lfloor x + d \rfloor = \lfloor x_0 + x_1 + d_0 + d_1 \rfloor = \lfloor 2 d_0 + \underbrace{x_1 + d_1}_{< 1} \rfloor = 2 d_0$$ prima aetate $$b = \lfloor x + d \rfloor = \lfloor x_0 + x_1 + d_0 + d_1 \rfloor = \lfloor 2 d_0 + \underbrace{x_1 + d_1}_{< 1} \rfloor = 2 d_0$$ pro.

2 si: $$1 \leq x_1 + d_1 < 2$$:

Et $$2 \lfloor x_0 + x_1 \rfloor = \lfloor x_0 + d_0 + \underbrace{x_1 + d_1}_{\geq 1} \rfloor \Leftrightarrow 2 x_0 = x_0 + d_0 + 1 \Leftrightarrow x_0 = d_0 + 1.$$

Et hoc modo, quod $$a = \lfloor x \rfloor = \lfloor x_0 + x_1 \rfloor = \lfloor d_0 + 1 + x_1 \rfloor = d_0 + 1$$ et $$b = \lfloor x+d \rfloor = \lfloor x_0 + x_1 + d_0 + d_1 \rfloor = \lfloor 2 d_0 + 1 + \underbrace{x_1 + d_1}_{\geq 1} \rfloor = 2 d_0 + 2$$ ad alterum constellatio desideravit aetatem.

Nominatim hisce Litteris modo, exempli gratia, si tua mater peperit vobis ante annos $$20$$ annis, est prorsus in tempore vestra bis $$40$$ et $$42$$ annis. Etiam interesting, et, si quod est $$n$$ tempora, quia vetera: Ecce $$n \in \mathbb{N}$$ ad arbitrium suum, et ut $$x_0 = \frac{d_0}{n-1} \in \mathbb{N} \Leftrightarrow d_0 = k (n-1)$$ . Hoc operatur prorsus cum aetate integri difference $$\lfloor d \rfloor = d_0$$ aeque multiplices, $$n-1$$ : mater tua est, si exempli causa superius per $$24$$ anno $$6$$ temporis aetas tua.

Back