Ma waho aʻe o ka pilikia naita naita kaulana a me ka pilikia mōʻī wahine, nui nā nīnau pīhoihoi ʻē aʻe i ka honua o ka mōkākā. Ua hoʻopā wau i kekahi mau ʻike liʻiliʻi i loko o kahi hoʻokomo blog ma mua. Inā pili ʻoe i ka makemakika me nā pilikia chess, ʻike koke ʻoe i ka makemakika i nā pane maʻalahi a hoʻomālamalama hoʻi no nā nīnau he nui.
Ma ke ʻano he laʻana, e mālama wau i kēia pilikia: nānā ʻoe i kahi papa chess manuahi ʻole me 64 mau māla a hoʻonoho i kahi mōʻī wahine keʻokeʻo i kēlā me kēia kūlana \((x,y)\) . Ehia mau neʻe hiki i ke mōʻī wahine i kēia manawa?
Ke hoʻohana nei i nā kumu hoʻohālikelike o ka papa, hoʻololi mākou i kēlā me kēia kiko \( (x,y) \in \{1,2,3,4,5,6,7,8\} \times \{1,2,3,4,5,6,7,8\} \) i kona ʻaoʻao ma ka quadrant hema hema \( (x',y') \in \{1,2,3,4\} \times \{1,2,3,4\} \) a koho i ka palena iki \(z\) nā kuhi ʻelua. I ka pae hope loa e loaʻa iā \(7\) papamoe, \(7\) ʻākau a me \( 7 + 2\cdot(z-1)\) nā diagonal hiki, no laila kēia hopena:
\[ f:\{1,2,3,4,5,6,7,8\} \times \{1,2,3,4,5,6,7,8\}, \\ f(x,y) = 2 \cdot \min(-|x-4,5|+4,5; -|y-4,5|+4,5)+19 \]
Hiki i ka mea heluhelu makemake hoʻonui maʻalahi i ka pilikia i nā papa chess o ka nui \(n^2\) .